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a b s t r a c t

While almost everyone discounts the value of future rewards over immediate rewards, people differ in
their so-called delay-discounting. One of the several factors that may explain individual differences in
delay-discounting is reward-processing. To study individual-differences in reward-processing, however,
one needs to consider the heterogeneity of neural-activity at each reward-processing stage. Here using
EEG, we separated reward-related neural activity into distinct reward-anticipation and reward-outcome
stages using time-frequency characteristics. Thirty-seven individuals first completed a behavioral delay-
discounting task. Then reward-processing EEG activity was assessed using a separate reward-learning
task, called a reward time-estimation task. During this EEG task, participants were instructed to estimate
time duration and were provided performance feedback on a trial-by-trial basis. Participants received
monetary-reward for accurate-performance on Reward trials, but not on No-Reward trials. Reward trials,
relative to No-Reward trials, enhanced EEG activity during both reward-anticipation (including, cued-
locked delta power during cue-evaluation and pre-feedback alpha suppression during feedback-antici-
pation) and reward-outcome (including, feedback-locked delta, theta and beta power) stages. Moreover,
all of these EEG indices correlated with behavioral performance in the time-estimation task, suggesting
their essential roles in learning and adjusting performance to maximize winnings in a reward-learning
situation. Importantly, enhanced EEG power during Reward trials, as reflected by stronger 1) pre-feed-
back alpha suppression, 2) feedback-locked theta and 3) feedback-locked beta, was associated with a
greater preference for larger-but-delayed rewards in a separate, behavioral delay-discounting task. Re-
sults highlight the association between a stronger preference toward larger-but-delayed rewards and
enhanced reward-processing. Moreover, our reward-processing EEG indices detail the specific stages of
reward-processing where these associations occur.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Choosing between receiving $400 today or $800 today is easy.
Most people, if not everyone, will select $800 today. However,
choosing between receiving $400 today or $800 in three years is
more difficult, and different people will choose differently. This
37
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latter decision becomes harder and requires a stronger computa-
tional demand (Rangel et al., 2008) because the subjective value of
$800 is devalued, or discounted, over time. For decades, econo-
mists, psychologists, and, more recently, cognitive neuroscientists
have studied this so-called delay-discounting phenomenon (also
known as temporal discounting or inter-temporal choices; Ainslie,
1975; Frederick et al., 2003; Kalenscher and Pennartz, 2008; Peters
and Büchel, 2011; Samuelson, 1937; Schultz, 2010). While the
phenomenon is well documented, it is clear that people vary in
how much they discount future rewards. In fact, individual dif-
ferences in delay-discounting are stable over time and are some-
times considered a personality trait (Kirby, 2009; Odum, 2011).
Recently personality and cognitive-neuroscience research has
shown that these individual differences in delay-discounting are
correlated with several trait affective and cognitive variables (Civai
et al., 2016; Hirsh et al., 2008; Mahalingam et al., 2014). Among
these variables is reward-processing (Benningfield et al., 2014;
Boettiger et al., 2007; Hariri et al., 2006), which relates to the value
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an individual places on potential rewards during both the ex-
pectation and receipt of that reward (McClure et al., 2004; Schultz
et al., 2000). Yet, the exact nature of the relationship between
delay-discounting tendencies and individual differences in re-
ward-processing is still unclear, perhaps due to the multifaceted
nature of reward-processing.

1.1. Reward-processing and individual differences in delay-dis-
counting responses

An early study by Hariri et al. (2006) reported that individuals
with elevated reward-related neural activation in the ventral
striatum (VS) during an incentivized fMRI card-guessing task had a
stronger preference toward smaller-but-immediate rewards, as
indexed by a subsequent behavioral delay-discounting task. This
finding suggests that enhanced reward-processing is related to a
stronger preference toward smaller-but-immediate rewards.
However, recent data suggests the opposite pattern, indicating
that elevated reward-processing is associated with a preference for
larger-but-delayed (as opposed to smaller-but-immediate) re-
wards. In line with this view, a recent fMRI study using the
Monetary Incentive Delay (MID) task reported that elevated VS
activation during reward-anticipation among adolescents was as-
sociated with a stronger preference for larger-but-delayed rewards
on a subsequent behavioral delay-discounting task (Benningfield
et al., 2014). This finding is consistent with other recent fMRI
studies reporting that elevated activation in the VS is associated
with a stronger preference toward larger-but-delayed rewards
(Ballard and Knutson, 2009; Samanez-Larkin et al., 2011). This
relationship is also in line with animal research showing that le-
sions to the VS lead to a preference for smaller-but-immediate
choices (Cardinal et al., 2001). In addition to the VS, enhanced
activity in another neural region implicated in reward processing,
the lateral orbitofrontal cortex (L-OFC), has been associated with a
stronger preference toward larger-but-delayed rewards during an
fMRI delay-discounting task (Boettiger et al., 2007). Next, there is
indirect evidence from research involving the Val158Met poly-
morphism of the catechol-O-methyltransferase (COMT) gene. The
Met-allele of the COMT gene is associated with higher synaptic
dopamine levels and carriers of this allele display enhanced VS
activation in an fMRI reward task (Chen et al., 2004; Yacubian
et al., 2007). Critically, Met-allele carriers also show a preference
toward larger-but-delayed rewards (Boettiger et al., 2007; Gianotti
et al., 2012; Smith and Boettiger, 2012). More recently, research
with Parkinson patients suggests that medications designed to
elevate dopamine signaling are associated with a heightened
preference for larger-but-delayed rewards (Foerde et al., 2016).
Thus, taken as a whole, evidence from fMRI, animal, genetic, and
pharmacological studies suggest that individuals with elevated
reward-processing have a tendency to wait for larger rewards and
forgo smaller-but-immediate rewards.1
1 The relationship between elevated reward-processing and a stronger pre-
ference for larger-but-delayed rewards does not necessarily support or contradict
one of the most cited theories in delay-discounting, called “the visceral factor
perspective” by Loewenstein and colleagues (Frederick et al., 2003; Loewenstein,
1996, 2000). Loewenstein and colleagues proposed that visceral factors, or drive
states (such as, hunger, thirst, emotions, moods, craving for drugs, etc.), may ex-
plain intra-individual variability in delay-discounting. These visceral factors are
endogenous, and can be changed from moment to moment depending on one's
drive state (e.g., hunger level depending on how long ago a person ate food). To
support his theory, Loewenstein (1996) highlights research by Mischel (1974) and
Mischel et al. (1989) showing that children prefer a smaller-but-immediate reward
if the reward object (e.g., marshmallow) is placed in front of them. But children
would prefer a larger-but-delayed reward if they see a photograph of the delayed
reward object. Loewenstein (1996) interpreted these findings as suggesting that
having the reward object in front of you enhances the drive state for the immediate
rewards, and seeing the photograph of the delayed reward object enhances drive
The current study aimed to further test and substantiate the
relationship between a stronger preference toward larger-but-
delayed rewards and enhanced reward-processing by investigating
the relationship at different temporal stages of reward-processing
via electroencephalogram (EEG). Reward-processing is thought be
comprised of two temporal stages that are mediated by distinct
neurobiological systems: reward-anticipation and reward-out-
come (Berridge, 1996; Wise, 2008). The superior temporal re-
solution of EEG, compared to fMRI, allows researchers to more
accurately dissociate neural-cognitive states that occur close to
each other in time (Cohen, 2014; Luck, 2014), such as reward-an-
ticipation and reward-outcome stages, as well as between differ-
ent sub-stages within reward-anticipation itself (Brunia et al.,
2011; Goldstein et al., 2006; McAdam and Seales, 1969). EEG, for
instance, has been used to dissociate reward-anticipation from
motor-preparation (Brunia et al., 2011; Hughes et al., 2013), which
has been a challenge in previous fMRI research on the relationship
between reward-processing and delay discounting tendencies. As
noted by Benningfield et al. (2014), for example, the fMRI MID task
does not isolate motor-preparation processes from reward-antici-
pation processes. Moreover, recent advancements in EEG time-
frequency analyses allow researchers to investigate neural pro-
cesses in ways that may not be available in other techniques, such
as examining changes in neural activation (power) at a specific
time windows and frequency bands (Cohen, 2014; Makeig et al.,
2004).

1.2. The reward time estimation task

To identify different stages of reward-processing, we adapted a
feedback-learning task (called the reward time estimation task)
(e.g., Damen and Brunia, 1987; Kotani et al., 2003; Luft, 2014;
Pornpattananangkul and Nusslock, 2015). Here participants were
asked to estimate a specific time duration by pressing a button
3.5 s after the onset of a Reward or No-Reward cue. The Reward/
No-Reward cue indicated whether the current trial was a Reward-
or No-Reward trial. Participants received monetary-reward for
accurate-performance (pressing close to 3.5 s) on Reward trials,
but not on No-Reward trials. Two seconds after making the button
press, participants received feedback regarding the accuracy of
their time-estimation. This paradigm allowed us to parse EEG re-
lated to reward-processing into reward-anticipation and reward-
outcome phases (i.e., before and after feedback onset, respec-
tively). Within reward-anticipation, we further separated EEG ac-
tivity into 1) a cue-evaluation stage, involving a period im-
mediately following the Reward/No-Reward cue, and 2) a feed-
back-anticipation stage, involving a period right before the feed-
back while participants were waiting to see if their recent action
was considered accurate (i.e., close to 3.5 s). In addition to EEG
indices, the improvement of time-estimation accuracy as the task
proceeds can also be used as a behavioral index for the effective-
ness in learning through feedback (Luft et al., 2013a). When the
task provides rewards based on performance, then this behavioral
index may reflect motivated-learning, or how motivated people
are in learning to improve their performance in order to maximize
reward earning (Luft, 2014). This motivated-learning behavioral
index can be used 1) in corroborating EEG activity as indices of
reward processing, and 2) in and of itself as an indirect, behavioral
measure for individual-differences in reward-processing.
(footnote continued)
states for the delayed reward. The focus in the current study, however, is inter-
individual relationships between reward-processing and delay-discounting. This is
reflected in the use of separate reward-processing and delay-discounting tasks, and
the fact that we did not manipulate the visceral factors of our delay-discounting
task (see Section 2).
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1.3. EEG indices at each stage of reward-processing

During cue-evaluation, participants evaluated whether their
immediate future action could lead to a reward. In previous re-
search, a cue signaling the possibility of receiving a reward was
associated with a stronger P3 ERP component (compared to a cue
in No-Reward trials) (Broyd et al., 2012; Goldstein et al., 2006;
Ramsey and Finn, 1997; Santesso et al., 2012). More recently, Ca-
vanagh (2015) found an enhancement of EEG power (or synchro-
nization) in the delta band (�1–3 Hz, called cue-locked delta) to
reward-related cues. This cue-locked delta power found pre-
dominantly at parietal sites approximately 100–500 ms following
cue onset is relevant to the P3 ERP component. Moreover, Cava-
nagh (2015) showed that enhanced cue-locked delta power to
reward-related cues predicted behavioral adjustments in a re-
inforcement learning task, suggesting an important role of cue-
locked delta power in the cue evaluation stage.

As for feedback-anticipation, the suppression (or desynchroni-
zation) of alpha (�8–13 Hz) EEG power at parieto-occipital sites
prior to stimulus onset appears to index anticipation-related
processes toward upcoming visual stimuli. For instance, using a
time-estimation task, Bastiaansen et al. (1999, 2002) and Bas-
tiaansen and Brunia (2001) provided either visual or auditory
feedback regarding the accuracy of time-estimation to partici-
pants. The authors reported alpha power suppression immediately
preceding both types of feedback, but this alpha suppression was
strongly distributed to occipital sites for the visual, but not audi-
tory, feedback. This suggests the role of pre-stimulus alpha sup-
pression in modality-specific anticipation processes. Given that
alpha power reflects the functional inhibition of neural activity
(Jensen and Mazaheri, 2010), alpha suppression during the pre-
stimulus anticipatory period likely reflects the dis-inhibition of
neural activity in sensory cortices to facilitate attentional alloca-
tion to the upcoming stimulus. Additionally, this pre-stimulus
suppression of parieto-occipital alpha to visual stimuli has been
found to track the location of where people anticipate the stimuli
to appear (Thut et al., 2006). Stronger suppression of pre-stimulus
alpha power is also associated with how well people perceive the
preceding near-threshold stimulus (Hanslmayr et al., 2007). Col-
lectively, these findings suggest a relationship between alpha-
suppression and anticipatory attention. More recently, stronger
alpha suppression has been reported following monetary-reward
cues and preceding monetary-reward feedback (Hughes et al.,
2013). This additional suppression of alpha power by reward
motivational cues suggests that alpha suppression indexes en-
hanced attentional processes during the anticipation of reward-
related stimuli/feedback. Consistent with this idea, van den Berg
et al. (2014) recently investigated the role of reward-related cues
in a Stroop task, and demonstrated an inter-individual relation-
ship. Specifically, individuals who had particularly strong alpha
suppression following reward-related cues were more likely to
have better behavioral performance on reward trials. Therefore,
pre-feedback alpha suppression should serve as a reliable index
for individual differences in reward-processing during the feed-
back-anticipation stage of reward-anticipation.

The reward-outcome period in our time-estimation task in-
volved participants receiving feedback for that particular trial. We
focused on two types of feedback evaluation: reward-evaluation
and performance-evaluation. During reward-evaluation, in-
dividuals evaluate the motivational value of the feedback (Luft,
2014). That is, regardless of whether their performance outcome is
good or bad, people should be more motivated to learn the out-
come of their performance when this performance can lead to
monetary reward (i.e., during Reward trials compared to No-Re-
ward trials). During performance-evaluation, individuals assess
whether their prior action was good or bad in meeting their
performance goal, e.g., whether or not their time-estimation was
accurate (Cavanagh and Shackman, 2015; Miltner et al., 1997). The
concept of performance evaluation has been related to both pre-
diction error and conflict resolution. Unfortunately, many EEG
studies have lumped these two aspects of feedback evaluation (i.e.,
reward-evaluation and performance evaluation) together, making
it difficult to interpret the specific cognitive processes underlying
their EEG findings. Here we separate reward-evaluation and per-
formance evaluation. Furthermore, we examine three separate
EEG indices during the reward-outcome stage, each occurring at
distinct frequency bands: feedback-locked delta, feedback-locked
theta and feedback-locked beta. As outlined next, we argue that
each of these feedback-locked EEG profiles index individual dif-
ferences in reward-processing during the reward-outcome stage.

First, similar to cue-locked delta, recent studies have started to
document changes in feedback-locked delta (1–3 Hz) power at
parietal sites during reward-outcome approximately 100–500 ms
following feedback onset (Cavanagh, 2015; Foti et al., 2015; Leicht
et al., 2013). Cavanagh (2015) reported that feedback-locked delta
was associated with prediction error in a reinforcement-learning
task. Foti et al. (2015) reported that feedback-locked delta activity
was stronger to feedbacks indicating monetary gains, compared to
losses. Nonetheless, because monetary-gain feedback in these
previous studies indicated both good performance and a positive
reward outcome, it remains unclear whether enhancement in
feedback-locked delta activity to gain feedback is driven by per-
formance-evaluation or reward-evaluation. In the present study,
we use the time estimation task to dissociate neural processes
associated with reward and performance evaluation, and we ex-
amine their respective relationships with individual differences in
delay-discounting.

Next, the enhancement of feedback-locked theta (�4–7 Hz)
power at frontal-midline sites (i.e., frontal-midline theta, FMT)
approximately 200–400 ms following feedback onset has been
implicated in feedback/outcome evaluation (Cohen et al., 2011).
Thought to be generated from the anterior-cingulate cortex (Ca-
vanagh and Frank, 2014), enhanced feedback-locked theta has
been associated with cognitive-control processes that incorporate
feedback/outcome information to facilitate behavioral adjustment
on subsequent trials in order to maximize performance (van de
Vijver et al., 2011). Feedback-locked theta appears sensitive to both
performance-evaluation and reward-evaluation (Luft, 2014). In
contrast to feedback-locked delta, feedback-locked theta is reliably
stronger for bad-performance (compared to good-performance)
feedback (Cohen et al., 2007; for a review see Luft (2014)). Ad-
ditionally, such enhancement to bad-performance feedback pre-
dicts behavioral adjustment on a subsequent trial (Cavanagh and
Shackman, 2015). As for reward-evaluation, Van den Berg et al.
(2012) employed the time-estimation task and focused on the
Feedback-Related Negativity (FRN), an event-related potential
(ERP) thought to reflect the phase/time-locked feature of feed-
back-locked theta (Cavanagh et al., 2012). They found an enhanced
FRN to feedback during Reward-trials where Good-performance
led to monetary reward, compared to feedback during No-Reward
trials where performance had no monetary consequences. Similar
to the FRN, other studies have shown the influence of reward-
evaluation on feedback-locked theta. For instance, feedback-locked
theta is modulated by reward expectation (Cohen et al., 2007) and
is stronger following feedback indicating a higher magnitude of
monetary reward (Leicht et al., 2013). Thus, we expected feedback-
locked theta to be modulated by both reward and performance
evaluation.

Lastly, in addition to feedback-locked delta and theta, several
recent studies have focused on feedback-locked EEG in the beta
band (�15–25 Hz) (for review, see Luft (2014)). Similar to feed-
back-locked delta (but opposite to feedback-locked theta),
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researchers have consistently found stronger beta power to posi-
tive feedback (e.g., monetary gains), compared to negative feed-
back (e.g., monetary losses) (Cohen et al., 2007; De Pascalis et al.,
2012; Haji Hosseini et al., 2012; Marco-Pallares et al., 2008; Marco-
Pallarés et al., 2009). Given that a similar pattern of enhanced beta
power has been reported in the ventral striatum of animals during
a reward-processing task (Berke, 2009; Courtemanche et al.,
2003), it has been proposed that feedback-locked beta power re-
presents reward-related signals from this region. Parietal feed-
back-locked beta power is reduced in humans following feedback
during reward-learning tasks, such as the time estimation task
(Luft et al., 2013a, 2013b; van de Vijver et al., 2011). This reduction
in feedback-locked beta power (desynchronization) is less pro-
nounced when feedback indicates good performance, compared to
bad performance. Additionally, a greater enhancement of feed-
back-locked beta power (i.e., less reduction/desynchronization)
predicts more rapid learning of a time duration in the time esti-
mation task (Luft et al., 2013a). Nonetheless, similar to feedback-
locked delta, most previous studies of feedback-locked beta have
either lumped performance evaluation and reward evaluation
feedback together (e.g., monetary gain indicating both good per-
formance and reward associated with the performance) or focused
solely on performance-evaluation, making it hard to interpret the
psychological meaning of the effects. The current study separated
the two aspects of feedback evaluation, and assessed their re-
lationships with delay-discounting tendencies.
1.4. Current study

In the present study, participants completed a behavioral de-
lay-discounting task and then a separate EEG reward time-esti-
mation task.2 Drawing on existing research (Benningfield et al.,
2014; Boettiger et al., 2007; Foerde et al., 2016), we predict that
enhanced reward-related neural activity will be associated with a
greater preference for larger-but-delayed rewards. An important
contribution of this study is that we examined the relationship
between reward-related neural activity and delay discounting
tendencies at different temporal stages of reward-processing
based on EEG time-frequency characteristics. Within the reward-
anticipation stage, elevated reward-processing was oper-
ationalized as 1) greater cued-locked delta activity during cue-
evaluation and 2) greater pre-feedback alpha suppression during
feedback-anticipation. Within the reward-outcome stage, elevated
reward-processing was operationalized as greater feedback-locked
delta, theta and beta activity. To help corroborate these EEG vari-
ables as indices of reward processing, we examined the relation-
ship between EEG-related data and behavioral learning perfor-
mance during the reward time estimation task, which reflects
motivated learning (Luft et al., 2013a). We also expect this beha-
vioral index for motivated learning to correlate with individual
differences in delay-discounting in a manner that is similar to
reward-processing EEG indices.
2 There are difficulties in interpreting results regarding individual differences
from studies that investigated the association between reward-related neural ac-
tivation and delay-discounting tendencies within the same delay-discounting task
(e.g., Ballard and Knutson, 2009; Boettiger et al., 2007). As argued by Benningfield
et al. (2014), reward-related neural activation in the context of a delay-discounting
task is already arbitrarily reduced due to the presence of the delay, and hence
should not be used as an individual-difference index for reward-processing. Ac-
cordingly, we employed two separate tasks to examine the relationship between
reward-related neural activity and delay discounting tendencies.
2. Methods

2.1. Participants

Thirty-seven right-handed o18, Chapman Handedness Scale;
Chapman and Chapman (1987) native English speakers (21 fe-
males; age M¼19.05 years, SD¼1.22) at Northwestern University
received partial course credit for their participation. Participants
also earned additional monetary bonus based on their perfor-
mance in the reward time estimation task (see below). Data from
nine additional participants were discarded due to an EEG
equipment problem (n¼1), excessive EEG slow-frequency (i.e.,
sweat artifact; n¼2) or high-frequency noise (i.e., muscle artifact;
n¼1), giving the same answer throughout the Delay-Discounting
task (n¼2), or a model-fit index on the Delay-Discounting task (R-
square, see below) that was 1.5 inter-quartile ranges (IQRs) away
from the nearer quartile (n¼3). Participants had no neurological
history of head injury and were not taking psychotropic medica-
tions at the time of the study. Participants provided informed
consent before the experiment. Northwestern Institutional Review
Board approved the study.

2.2. Behavioral measure of delay-discounting responses: the delay-
discounting task

Before EEG setup, participants completed a computer-adaptive
version of the Delay-Discounting task (Fig. 1a) to assess individual
differences in delay-discounting tendencies (Ahn et al., 2011; Ra-
chlin et al., 1991). Given previous studies reporting a similar pat-
tern of responses in delay-discounting between hypothetical and
real monetary rewards (Johnson and Bickel, 2002; Lagorio and
Madden, 2005), we used hypothetical rewards in this task to allow
us to assess a wide range of delay periods and reward amounts.

For each trial in the delay-discounting task, participants were
told to choose between a smaller-but-immediate (e.g., “$400 now”)
or larger-but-delayed (e.g., “$800 in one year”) reward (see Fig. 1
for an example of a trial). There were six blocks of trials. Each
block involved the same distribution of six different delay periods:
two weeks, one month, six months, one year, three years or ten
years. The order of blocks was fully randomized across partici-
pants. During the first trial of each block, participants made a
choice between “$400 now” vs. “$800 at a given delay.” A mean of
the upper and lower bounds according to the choice made on the
current trial were used as a smaller-but-immediate choice on the
subsequent trial (Ahn et al., 2011; Du et al., 2002; Green and
Myerson, 2004). The larger-but-delayed choice was always fixed at
$800 regardless of the choice made on the previous trial. For ex-
ample, if “$400 now” was chosen over “$800 in one year”, then the
smaller-but-immediate choice on the next trial would have been
$200 (i.e., the mean of upper ($400) and lower ($0) bounds). This
is because, based on the current-trial choice, “$800 in one year”
had a lower subjective value than “$400 now”, which means that
the subjective value of “$800 in one year” was between “$0 now”

and “$400 now”. Thus, the subsequent trial would assess whether
“$800 in one year” had a lower or higher subjective value than
“$200 now.” Conversely, if “$800 in one year” was chosen over
$400, the next smaller-but-immediate choice would have been
“$600 now” (i.e., the mean of upper ($800) and lower ($400)
bounds). Following procedures conventionally used in studies fo-
cusing on individual-differences (Ahn et al., 2011; Du et al., 2002),
we continued the adaptation of the smaller-but-immediate choice
to the sixth trial of each block. Accordingly, the mean of the upper
and lower bounds of the sixth trial was considered participants’
subjective value of $800 at a given delay (Ahn et al., 2011; Du et al.,
2002). The subjective values of $800 at every delay from all of the
blocks were then fit into a hyperbolic model, which represented



Fig. 1. The delay-discounting task. a. An example of one trial in the delay-dis-
counting task. b. Mean subjective values of a larger-but-delayed choice ($800) as a
function of delays (in weeks). Error bars represent7standard error.
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individual differences in delayed-discounting tendencies (Green
and Myerson, 2004; Mazur, 1987). The steepness of the slope
within this hyperbolic model (known as the discounting rate, or k
value) reflects the extent to which people prefer smaller-but-im-
mediate (compared to larger-but-delayed) rewards (see data
analyses below).

2.3. EEG measure of reward-processing: the reward time-estimation
task

The reward time-estimation task, adapted from a previous EEG
paradigm (e.g., Damen and Brunia, 1987; Kotani et al., 2003), was
used to assess individual differences in reward-related EEG activ-
ity. Participants were instructed to press a button with their right
index finger 3.5 s after seeing a cue (see Fig. 2 for a schematic
representation of the task). During Reward trials, participants
earned 20 cents for accurate time estimations and received no
monetary reward for inaccurate estimates. During No-Reward
trials, participants received no monetary reward irrespective of
their performance. Thus, the difference in EEG activity between
Reward trials and No-Reward trials was considered an index of
reward-related neural activity and reward-processing more gen-
erally. Each trial began with a Reward/No-Reward anticipation cue
that signaled whether the trial was a Reward or No-Reward trial.
This cue was presented for 300 ms and involved either circle or
square shapes (counterbalanced across participants). The circle
and square shapes were matched for luminance, contrast, and
spatial frequency using Shine toolbox (Willenbockel et al., 2010) in
Matlab.

We considered accurate responses as estimations that fell
within the correct time-window. To control for variance in time-
estimation ability among participants, two procedures were used
to determine the correct time window. First, the correct time
window on a given trial was shortened (or lengthened) by 20 ms if
the response on the previous trial was (or was not) within the
correct time-window (Kotani et al., 2003; Ohgami et al., 2006).
This method has been found to generate an accuracy-rate of ap-
proximately 50%. Second, we included three Control blocks, each
comprised of 36 trials, which were administered prior to the Ex-
perimental blocks. During these Control blocks, participants were
instructed to button-press 3.5 s after seeing a triangle-shaped cue.
There was no reward involved during these Control blocks, and
participants were not informed about any of the reward con-
tingencies in the time estimation task until after they finished
these blocks. Moreover, unlike the Experimental blocks, partici-
pants received no performance feedback during the Control
blocks, except if they made an extremely fast (a response faster
than 2 s, indicated by a “o2” sign) or slow (a response slower than
5 s, indicated by a “45” sign) response. These Control blocks al-
lowed us to generate a correct response time window that was
then calibrated to each individual participant and to measure
participant's initial time-estimation ability prior to them learning
through reward/performance feedback in the Experimental blocks
(see below). The initial time window for a correct response during
the Control blocks was 7500 ms, centered at 3500 ms. Following
the Control blocks, participants completed 30 practice trials. These
practice trials resembled trials during the Experimental blocks,
except there were no earnings. The individualized time window
for a correct response obtained from the Control blocks was used
in the first practice trial.

The Experimental blocks consisted of six blocks of 36 trials.
Within each block, there was a random distribution of Reward and
No-Reward trials with a 50/50 split for each trial type. During the
Experimental blocks, two lines of feedback text appeared two
seconds following the button-press in the middle of the screen for
1000 ms (see Fig. 2). The top-line indicated performance feedback
information, which was separated into three categories: Good-
Performance, Bad-Performance and Extremely Fast/Slow. Good-
Performance corresponded to an accurate response, or a response
within the correct time-window, and was indicated by a “¼ ” sign
on the top line. Bad-Performance corresponded to a response
slower than 2 s and faster than 5 s, but not within the correct
time-window, and was indicated by a “o3.5” (for a response be-
tween 2 s and the lower end of the correct time-window) or
“43.5” (for a response between the higher end of the correct time-
window and 5 s) sign on the top line. Extremely Fast/Slow feed-
back corresponded to a response faster than 2 s or slower than 5 s
and was indicated by a “o2” (for a response faster than 2 s) or
“45” (for a response slower than 5 s) sign on the top line.

The bottom line of the feedback text indicated whether or not
participants won money for that particular response and included
the following: “$” indicated the participant won money (20 cents)
for that trial, and “0” indicated the participant did not win money
for that trial. Thus, during Reward trials, participants would see
“$”for Good-Performance, and see “0” for both Bad-Performance
and Extremely Fast/Slow estimation. For No-Reward trials, parti-
cipants would see “0” regardless of their performance. Trials were
terminated with a randomly distributed ITI between 1000 and
1150 ms. To incentivize participants’ continued attention on both
Reward and No-Reward trials, they were told they would receive
no earnings if they saw feedback indicating extremely fast/slow



Fig. 2. Diagram of the time estimation task during the experimental blocks. Note: the image representations for Reward-Anticipation and No-Reward-Anticipation Cues were
counter-balanced across subjects. Good-Performance feedback corresponds to an accurate response, or a response within the correct time-window, and is indicated by a “¼ ”

sign on the top line. Bad-Performance feedback corresponds to a response slower than 2 s and faster than 5 s, but not within the correct time-window, and is indicated by a
“o3.5” or “43.5” sign on the top line, respectively. Extremely Fast/Slow feedback corresponds to a response faster than 2 s or slower than 5 s and is indicated by a “o2” or
“45” sign on the top line, respectively. The task during the Control blocks used a different image representation for the cue that carried no reward-related meaning, and only
provided Extremely Fast/Slow feedbacks (see text). ITI¼ Inter Trial Interval.
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responses (i.e., “o2” or “45”) more than 15 times. This ensured
that they avoided extremely fast or slow responses.

2.4. Procedure

Following consent, participants completed the delay-dis-
counting task. EEG electrodes were then applied and participants
next completed the Time-Estimation Task. To help familiarize
participants with the time duration of 3.5-s, participants first lis-
tened to two beep sounds 3.5-s apart as many times as they de-
sired. Participants then completed the Control blocks for the Time-
Estimation Task with no knowledge of the upcoming Experimental
blocks. Participants were then given instructions regarding the
Experimental blocks and corresponding Reward and No-Reward
cues and the different kinds of feedbacks for the Time-Estimation
Task. Participants were tested on their comprehension of these
cues and feedbacks. Each block was separated by breaks of parti-
cipant-determined length. During these breaks, participants were
informed of their earnings and reminded of the meaning of the
Reward/No-Reward Cues.

2.5. Electrophysiological recording

Continuous EEG data with a sampling rate at 500 Hz (DC to
100 Hz on-line, Neuroscan Inc.) were collected from inside an
electro-magnetic shielded booth. Twenty-four Ag/AgCl scalp
electrodes were used (F7/3/z/4/8, FC3/z/4, C3/z/4, T3/4, CP3/z/4,
P3/z/4, T5/6, O1/z/2). HEOG and VEOG were recorded with four
separate eye electrodes. Recordings were referenced on-line to a
left mastoid and re-referenced offline to linked mastoids. Im-
pedance was kept below 5 kΩ and 10 kΩ for scalp and eye elec-
trodes, respectively. During offline analyses, eye movement arti-
facts were first corrected with PCA algorithms implemented in
NeuroScan EDIT (Neuroscan Inc.). Movement-related artifacts
were removed manually. EEG data were offline highpass-filtered at
.01 Hz.
2.6. Data analyses for the delay-discounting task

Each participants’ subjective value of $800 at every delay were
fit to the hyperbolic model in the form of V¼A/(1þkD) (Green and
Myerson, 2004; Mazur, 1987) using the Curve Fitting Toolbox in
Matlab. V was the subjective value, A was a larger-but-delayed
reward amount ($800), D was the delay interval in weeks, and k
was a free parameter, reflecting a discounting rate. The smaller the
k, the stronger preference toward larger-but-delayed rewards. To
normalize its distribution, the natural log of k, ln (k), was used as
an index for individual-differences in delay-discounting responses.
R-square as a model-fit index was also calculated. R-square in-
dicates the proportion of variance accounted for by the hyperbolic
model, ranging from 0 to 1 (perfect fit).

2.7. Data analyses for the reward time-estimation task

2.7.1. Manipulation check
We computed an Inaccurate Estimation index as the standard

deviation of the absolute difference between participants’ actual
estimations (in milliseconds, ms) and the target time interval
(3500 ms) (Luft et al., 2013a). Thus, higher Inaccurate Estimation
reflects worse time estimation performance. To normalize the In-
accurate Estimation distribution, a natural-log (In) transformation
was applied. As a manipulation check for whether participants
were more motivated during Reward trials, we compared In-
accurate Estimation during 1) Reward trials from all of the Ex-
perimental blocks, 2) No-Reward trials from all of the Experi-
mental blocks and 3) Control trials from all of the Control blocks.
We predicted lower Inaccurate Estimation during Reward (com-
pared to No-Reward and Control) trials.

2.7.2. Behavioral indices for individual-differences in motivated
learning

In addition to being used as a manipulation check, Inaccurate
Estimation was also employed as a behavioral index for individual-
differences in motivated learning. Specifically, Inaccurate
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Estimation during the Control blocks (referred to as Control In-
accurate Estimation) served as an index for individual differences
in estimation ability prior to learning in the Experimental blocks.
Inaccurate Estimation during the last (i.e., 6th) Experimental block
(referred to as Motivated-Learning Inaccurate Estimation) served
as an index for how motivated participants were to learn through
feedback over the course of the experiment (for a similar ap-
proach, see Luft et al. (2013a)). For individual differences in Mo-
tivated-Learning Inaccurate Estimation, we collapsed across Re-
ward and No-Reward trials during the last experiment block. This
is because, in the context of the current time-estimation task,
learning about their estimation performance through feedbacks
during the No-Reward trials also helped participants to earn more
rewards during the Reward trials. Thus, toward the end of the
experiment (i.e., 6th block), people who were more motivated to
obtain rewards in the task would perform better in both Reward
and No-Reward trials. Additionally, combing both Reward and No-
Reward trials during the last experiment block led to more trials to
be computed, thus increasing stability of Motivated-Learning In-
accurate Estimation as a measure for individual differences. This is
important, given that we only had 36 trials (Reward and No-Re-
ward trials combined) in each block. We then examined whether
both ln (k) and EEG indices have relationship with Control In-
accurate Estimation and Motivated-Learning Inaccurate
Estimation.

2.7.3. EEG data
Extremely fast (less than 2 s, “o2”) or slow (more than 5 s,

“45”) trials were excluded from the EEG analyses as they may
reflect a lack of attention to the task. EEGlab (Delorme and Makeig,
2004) was used to analyze EEG data. After a linear detrend was
applied to EEG epochs, any epoch containing artifacts (775 mV)
were rejected. Time-frequency decomposition was then performed
to compute event-related spectral perturbation (ERSP). ERSP refers
to changes in EEG power from the baseline period at specific fre-
quency and time (Makeig et al., 2004). We used a linear space for
both frequency (at every 1 Hz) and time (at every 2 ms).

We separated EEG activity into three phases of reward-pro-
cessing: 1) cue-locked EEG corresponding to cue-evaluation dur-
ing the reward-anticipation stage (i.e., cue evaluation during Re-
ward vs. No-Reward trials), 2) pre-feedback EEG corresponding to
feedback-anticipation during the reward-anticipation stage (i.e.,
anticipation while waiting for feedback outcome during Reward
vs. No-Reward trials), and 3) feedback-locked EEG corresponding
to the reward-outcome stage (i.e., evaluation of feedback that re-
vealed Reward and Performance information). For cue-locked and
feedback-locked EEG activity, we focused on ERSP power following
the onset of the cue and feedback, respectively. Here, EEG data
were epoched from �2500 to 3500 ms relative to cue/feedback
onset. This relatively long epoch allowed us to investigate ERSPs
from a low (1 Hz) to a relatively high (50 Hz) frequency, which
covered EEG frequency bands of interest during these time periods
(delta, theta and beta). A modified complex sinusoidal wavelet was
used with a sliding window of 3342-ms wide (leading to 3 cycles
at 1 Hz) and a wavelet factor of .92. To reduce the potential edge
effects, we removed half of the sliding window (1671 ms) at the
edges (i.e., the beginning and the end) of each epoch, leaving an
epoch between �829 and 1927 ms after edge removal. The
baseline for cue- and feedback-locked EEG was between �300 to
�100 ms before the stimulus onset.

For pre-feedback EEG activity, we focused on ERSP power prior
to feedback onset. Specifically, pre-feedback EEG activity was
epoched from �2557 to 2557 ms relative to the button-press.
Given that our focus during this period was specifically on the
Alpha band (8–13 Hz), we computed pre-feedback ERSP at a nar-
rower frequency range of 3–30 Hz. Because the lowest frequency
(3 Hz) for pre-feedback EEG was higher than it was in the cue-/
feedback-locked EEG (1 Hz), we used a shorter sliding window of
1114-ms wide (leading to 3 cycles at 3 Hz) and a wavelet factor of
.5. The removal of epoch edges (557 ms or half of a sliding win-
dow) shortened the epoch to be between �2000 and 2000 ms
relative to each button-press, which ended at the onset of the
feedback. EEG power during this period from �2000 to �1500 ms
before the button-press was used as the baseline. This early
baseline period was selected in order to avoid movement-related
activity near the time of the button-press.

Two-tailed paired parametric tests were performed on ERSP time-
frequency and topographic maps, as implemented in EEGlab. Multi-
ple comparisons were corrected using False Discovery Rate (FDR)
(Benjamini and Yekutieli, 2001). P-values based on these statistical
tests were shown on time-frequency and topographic maps. These
maps of p values indicate times, frequencies and electrodes at which
there was a significant effect. For cue-locked and pre-feedback EEG
activity, the statistical tests were used to assess whether there was an
effect of Reward conditions (Reward-trial vs. No-Reward-trial) on
ERSP power. For feedback-locked EEG activity, we separated feed-
backs based on evaluation types: Reward Evaluation (Reward-trial vs.
No-Reward-trial) x Performance Evaluation (Bad-Performance vs.
Good-Performance). The main effects and interaction between eva-
luation types were tested on ERSP power.

2.7.4. Reward-processing ERSPs as indices for individual differences
We focused individual differences analyses on ERSPs that sig-

nificantly varied between Reward and No-Reward trials according
to main-effect analyses (see Section 3). Specifically, for cue-locked
EEG, individual-differences analyses were centered at cue-locked
delta (1–3 Hz) between 100 and 500 ms following the cue onset at
the parietal CPz site, similar to a recent study on reward-proces-
sing to the cue (Cavanagh, 2015). For pre-feedback EEG, we used
alpha (8–13 Hz) power within the 500-ms window right before
feedback onset at Oz. Occipital pre-feedback alpha suppression
(i.e., lower power) is related to anticipation processes toward up-
coming visual stimuli (Bastiaansen et al., 1999; Hughes et al.,
2013). Thus, the more negative the alpha-suppression, the stron-
ger the anticipation-related processes. For feedback-locked EEG,
we focused on three different ERPSs from three different fre-
quency bands: feedback-locked delta, theta and beta. Similar to
cue-locked delta, feedback-locked delta (1–3 Hz) was quantified as
averaged EEG power between 100 and 500 ms following the
feedback onset at CPz. This is similar to previous research on
feedback-locked delta power (Foti et al., 2015). As for feedback-
locked theta (4–7 Hz), we employed averaged EEG power between
200 and 400 ms after feedback onset at Fz, following previous
research on frontal-midline theta and outcome/feedback-proces-
sing (Cohen et al., 2007; Marco-Pallares et al., 2008). Lastly,
feedback-locked beta (15–25 Hz) was quantified through averaged
EEG power between 400 and 600 ms after feedback onset at CPz
following a recent time-estimation study (Luft et al., 2013a).

In addition to examining ERSPs at separate conditions (i.e.,
Reward-trial and No-Reward-trial ERSPs for cue-locked and pre-
feedback EEG; Reward-trial, No-Reward-trial, Good-Performance
and Bad-Performance ERSPs for feedback-locked EEG), we also
computed ERSP difference scores by subtracting ERSP power
during No-Reward trials from that during Reward trials (collapsing
across Bad- and Good-Performance feedback for feedback-locked
EEG). Referred to as ΔReward ERSPs, these difference scores al-
lowed us to focus in on reward-processing EEG activity. For feed-
back-locked EEG, we also computed ΔPerformance ERSP differ-
ence scores by subtracting ERSP power during Good-Performance
trials from that during Bad-Performance trials, collapsing across
Reward- and No-Reward trials. The ΔPerformance ERSPs reflect
individual differences in performance evaluation.
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3. Results

3.1. Delay-discounting responses

Fig. 1b shows how subjective values of rewards were dis-
counted as a function of delays. The mean of ln (k) was �4.72
(SD¼1.45). R-square, as a model-fit index for the hyperbolic model
used, had the median of .89 (IQR¼ .94� .81), similar to previous
studies (de Wit et al., 2007; Hariri et al., 2006).

3.2. Reward time-estimation behavior

3.2.1. Manipulation check
During the time-estimation task, behavioral data from one

participant was lost due to a technical error, leaving data from 36
(as opposed to 37) participants. Overall, during the Experimental
blocks, participants estimated 3.5 s quite well (MRT¼3.52 s,
SD¼ .11), and rarely made extremely fast (less than 2 s) or slow
(more than 5 s) responses (M¼2.58 trials out of 216 trials,
SD¼2.15). Given that the accuracy rate (M¼50.3%, SD¼3.06) clo-
sely matched 50%, it is clear that the time-window adaptation
algorithmworked effectively. Across blocks, there were differences
in Inaccurate Estimation (i.e., SD of the absolute difference be-
tween actual estimations and the target time interval) among
Reward and No-Reward trials during all of the Experimental blocks
and Control trials during all of the Control blocks, F(1.14, 39.90)¼
84.33, po .001, Greenhouse-Geisser corrected. As expected,
Table 1
Zero-order correlations between ERSPs, behavioral indices and ln (k).

ERSPs and behavioral indices

Cue-locked Reward-trial delta
No-reward-trial delta
ΔReward delta

Pre-feedback Reward-trial alpha suppression
No-reward-trial alpha suppression
ΔReward alpha suppression

Feedback-locked Reward-evaluation Reward-trial delta
No-reward-trial delta
ΔReward delta

Reward-trial theta
No-reward-trial theta
ΔReward theta

Reward-trial beta
No-reward-trial beta
ΔReward beta

Feedback-locked Performance-evaluation Bad-performance delta
Good-performance delta
ΔPerformance delta

Bad-performance theta
Good-performance theta
ΔPerformance theta

Bad-performance beta
Good-performance beta
ΔPerformance beta

Behavioral Performance Motivated-Learning Inaccurate Estima
Control Inaccurate Estimation

Note. For feedback-locked Reward-evaluation ERSPs, ERSPs were collapsing across Bad-P
subtracting No-reward-trial ERSPs from Reward-trial ERSPs. Similarly, for feedback-lock
Reward-Trial feedbacks. ΔPerformance ERSPs were calculated by subtracting Good-Per
Alpha-Suppression reflect the greater suppression of alpha activity during Reward trials
goal of estimating time (3.5 s), and therefore high values reflect worse performance. M
Inaccurate Estimation indices during the last block of the experimental session, and d
*po .05. †po .10 (2-tailed). aBecame significant (r(35)¼� .36, p¼ .03), after a bivariate
Inaccurate Estimation was lower during Reward trials (M¼5.44
ln (ms), SD¼ .38) compared to during No-Reward trials (M¼5.54
ln (ms), SD¼ .39, po .001), which was lower than during Control
trials (M¼6.22 ln (ms), SD¼ .33, po .001).

3.2.2. Relationship between motivated learning inaccurate estima-
tion and delay-discounting responses

Motivated-Learning Inaccurate Estimation (i.e., collapsing
across all Reward and No-Reward trials during the last Experi-
mental block) was positively correlated with ln (k), while Control
Inaccurate Estimation (i.e., during the Control blocks) was not (see
Table 1 and Fig. 3). Thus, participants with poorer estimation
performance after learning throughout the task (i.e., higher Mo-
tivated-Learning Inaccurate Estimation) had higher k values (i.e.,
stronger preference toward small-but-immediate rewards). In
other words, people who were more motivated to learn through
feedbacks throughout the task were more likely to prefer larger-
but-delayed rewards.

3.3. Cue-locked EEG activity

Fig. 4a and b show ERSP time-frequency and topographic maps
of cue-locked EEG. Overall, following cue onset, there was an in-
crease in ERSP power at the delta (1–3 Hz) and theta (4–7 Hz)
bands and a decrease in ERSP power at the alpha/beta (8–25 Hz)
band. More importantly, cue-locked ERSP power at the delta (but
not theta or beta) band was significantly stronger for Reward trials
Motivated-Learning
Inaccurate Estimation

Control Inaccurate
Estimation

Delay-discounting
tendencies ln(k)

� .377* .047 � .076
� .069 .125 � .143
� .359* � .090 .080

.375* .209 .441**

.327† .237 .254

.196 .035 .400*

� .507** � .185 � .264
� .321† � .178 � .194
� .466** � .052 � .191

� .536** � .117 � .407*

� .302† � .131 � .293†

� .563** � .043 � .344*

� .377* .071 � .427**

� .302† .061 � .361*

� .237 .038 � .246a

� .480** � .205 � .196
� .338* � .14 � .242
� .16 � .075 .079

� .470** � .15 � .354*

� .454** � .076 � .400*

� .217 � .191 � .051

� .254 .149 � .303†

� .365* � .013 � .436**

.109 .202 .138

tion – .266 .393*

– – .014

erformance and Good-Performance feedbacks. ΔReward ERSPs were calculated by
ed Performance-Evaluation ERSPs, ERSPs were collapsing across Reward- and No-
formance ERSPs from Bad-Performance ERSPs. More negative values of ΔReward
(relative to No-Reward trials). Inaccurate Estimation refers to the deviation from the
otivated-Learning Inaccurate Estimation and Control Inaccurate Estimation refer to
uring the control blocks (i.e., before the learning occurred), respectively. **po .01.
outlier was removed (see Fig. 12).



Fig. 3. Scatterplot of the correlations between delay-discounting tendencies [ln (k)]
and Control Inaccurate Estimation (i.e., during the Control blocks) and Motivated-
Learning Inaccurate Estimation (i.e., during the last (6th) Experimental block). Note:
Delay-Discounting Tendencies ln (k) was significantly correlated with Motivated-
Learning Inaccurate Estimation (during the last (6th) experimental block) (r
(34)¼ .39, p¼ .02), but not with Control Inaccurate Estimation (during the control
blocks) (r(34)¼ .01, p¼ .94). Inaccurate Estimation is the standard deviation from
the goal of estimating 3.5 s. Hence, higher Inaccurate Estimation values reflect
worse time-estimation performance. Control Inaccurate Estimation reflects parti-
cipant’ time estimation ability prior to the experimental session, during when
participants could not learn about their performance through feedback. Motivated-
Learning Inaccurate Estimation during the last block of the experimental session
reflects how well participants had been motivated to learn through feedback over
the course of the Experimental session. Gray areas indicate the confident interval of
95% around the linear regression line.

N. Pornpattananangkul, R. Nusslock / Neuropsychologia 91 (2016) 141–162 149
than for No-Reward trials approximately 100 ms to 500 ms fol-
lowing cue onset at parietal sites (for p values, FDR corrected, see
Fig. 4a). This EEG pattern is similar to the profile of the parietal
delta during reward-related cue evaluation reported in previous
research (Cavanagh, 2015). Thus, for cue-locked EEG, we employed
delta power during this window at CPz as an EEG index for in-
dividual differences in cue evaluation during the reward-antici-
pation stage.

We found that cue-locked delta during Reward trials (but not
during No-Reward trials) was negatively correlated with Moti-
vated-Learning Inaccurate Estimation (see Table 1 and Fig. 4c).
Similarly, ΔReward (Reward- minus No-Reward-trial) cue-locked
delta was also negatively correlated with Motivated-Learning In-
accurate Estimation (see Table 1 and Fig. 9a). Control Inaccurate
Estimation, however, was not predicted by any cue-locked delta
indices (see Table 1). Altogether, this suggests that enhanced delta
power to Reward-trial cues (compared to No-Reward-trial cues)
was related to how well participants adjusted their time-estima-
tion performance. Nonetheless, none of the cue-locked delta in-
dices significantly predicted ln (k) (see Table 1).

3.4. Pre-feedback EEG activity

Fig. 5a and b show ERSP time-frequency and topographic maps
during a period prior to feedback onset. There was a clear pattern
of alpha (8–13 Hz) suppression (i.e., reduction in ERSP power) at
parieto-occipital sites, peaking at the period right before feedback
onset. This EEG pattern is similar to the profile of occipital alpha
suppression during anticipation-related activity reported in pre-
vious studies (Bastiaansen et al., 1999; Hughes et al., 2013; van den
Berg et al., 2014). As predicted, alpha suppression was significantly
stronger (i.e., higher reduction in alpha power) for Reward trials
than for No-Reward trials starting approximately 500 ms before
feedback onset. This effect was primarily significant at parieto-
occipital sites (for p values, FDR corrected, see Fig. 5a). Thus, we
employed pre-feedback alpha power during the 500-ms window
prior to feedback onset at Oz as an EEG index for individual dif-
ferences in feedback anticipation during the reward-anticipation
stage.

Motivated-Learning Inaccurate Estimation had a significant,
positive correlation with pre-feedback alpha during Reward trials,
and a marginally significant, positive correlation with this ERSP
during No-Reward trials (see Table 1 and Fig. 5c). Nonetheless,
Motivated-Learning Inaccurate Estimation was not correlated with
theΔReward (Reward minus No-Reward-trial) pre-feedback alpha
(see Table 1). Additionally, Control Inaccurate Estimation was not
correlated with any pre-feedback alpha indices (see Table 1). This
suggests that enhanced alpha suppression (i.e., lower alpha power)
prior to the feedback onset was related to better adjustment of
time-estimation performance (i.e., lower Inaccurate Estimation)
throughout the task. However, the relationship between alpha
suppression and time-estimation performance may not be limited
to Reward trials.

With respect to delay-discounting tendencies, pre-feedback
alpha power during Reward trials (but not during No-Reward
trials) had a positive relationship with ln (k) (see Table 1). More-
over, there was a significant positive relationship between ΔRe-
ward pre-feedback alpha and ln (k) (see Table 1 and Fig. 10). These
correlations suggest that participants who had stronger alpha
suppression (i.e., lower power) during Reward (compared to No-
Reward) trials (i.e., more negative ΔReward pre-feedback alpha)
had smaller k values. In other words, individuals who had stronger
feedback anticipation during Reward trials had a stronger pre-
ference toward larger-but-delayed, compared to smaller-but-im-
mediate, rewards.

3.5. Feedback-locked EEG activity

ERSP time-frequency and topographic maps following feedback
onset are shown in Figs. 6-8. Overall, following feedback onset,
EEG power was increased at the delta (1–3 Hz) and theta (4–7 Hz)
bands and decreased at the alpha/beta (8–25 Hz) band. Moreover,
the effect of Reward-Evaluation (Reward-trial vs. No-Reward-trial
feedbacks) on feedback-locked EEG power was found at delta,
theta and beta bands (for p values, FDR corrected, see Figs. 6b–8b).

3.5.1. Feedback-locked delta
Similar to cue-locked delta, feedback-locked delta (1–3 Hz) was

enhanced approximately 100–500 ms following feedback onset at
parietal sites. There were main effects of both Reward Evaluation
and Performance Evaluation on feedback-locked delta (see Fig. 6a
and c for ERSP power and Fig. 6b for p values, FDR corrected).
Specifically, for Reward Evaluation, feedback-locked delta was
stronger for Reward-trial, than No-Reward-trial, feedback at CPz
and other parietal sites. For Feedback Evaluation, feedback-locked
delta was significantly stronger for Good-Performance, than Bad-
Performance, feedback at parietal sites. There was also a significant
interaction. Yet, while the effect of Reward Evaluation (i.e., stron-
ger feedback-locked delta during Reward trials than during No-
Reward trials) was numerically larger for Good-Performance (than
for Bad-Performance) feedback, the Reward Evaluation effect was
significant for both Good-Performance and Bad-Performance
feedback. Thus, we collapsed across Good-Performance and Bad-
Performance feedback when employing the feedback-locked delta



Fig. 4. Cue-locked Parietal Delta. a. Shows event-related spectral perturbation (ERSP) time-frequency maps at the electrode CPz (Top) and topographic maps (the grand-
average of delta ERSP power (1–3 Hz) at the 100–500 ms window following cue onset) (Bottom) depicting cue-locked reward-anticipation EEG activity. Specifically, ERSP
activity during Reward and No-Reward trials is depicted in the left and middle columns, respectively. The right column depicts paired t-tests’ (df¼36) p values (FDR
corrected) for which Reward trial ERSP power was significantly different from No-Reward trial ERSP power. For these p-value maps, the time-frequency map shows p values
at each time and frequency at CPz, while the bottom topo map shows p values at the delta (1–3 Hz) band at the 100–500 ms window following cue onset at every electrode.
The time scale in the time-frequency maps is relative to the cue onset. Note that we computed time-frequency maps from �830 to 1828 ms (see text). However, for visual
proposes, we only show �300 to 1000 ms relative to the cue onset here, given our focus on the time period right after cue onset. Note also that heat-map scales for time-
frequency and topographic maps are different. b. Depicts ERSP at the delta band (1–3 Hz) at CPz. c. Shows a scatterplot between Motivated-Learning Inaccurate Estimation
(i.e., during the last Experimental block) and cue-locked delta ERSP (1–3 Hz between 100 and 500 ms) at CPz. In this scatterplot, cue-locked delta ERSP is separated to the
ERSP during Reward trials and No-Reward trials. Gray areas indicate the confident interval of 95% around the regression line.
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as an index for individual differences in Reward Evaluation of the
feedback.

Motivated-Learning Inaccurate Estimation had a significant,
negative correlation with feedback-locked delta during Reward
trials, and a marginally significant, positive correlation with this
ERSP during No-Reward trials (see Table 1 and Fig. 6d). Similar to
ΔReward cue-locked delta,ΔReward (Reward- minus No-Reward-
trial) feedback-locked delta was also negatively correlated with
Motivated-Learning Inaccurate Estimation (see Table 1 and
Fig. 9b). Motivated-Learning Inaccurate Estimation, however, had
no relationship with ΔPerformance (Bad minus Good-Perfor-
mance) feedback-locked delta. Similarly, Control Inaccurate Esti-
mation was not correlated with any feedback-locked delta indices
(see Table 1). Altogether, this suggests that enhanced feedback-
locked delta power to Reward-trial (compared to the No-Reward-
trial) feedback was related to a better behavioral adjustment of
time-estimation performance (reflected by smaller Motivated-
Learning Inaccurate Estimation). Nonetheless, similar to cue-
locked delta indices, feedback-locked delta indices did not sig-
nificantly predict ln (k) (see Table 1).



Fig. 5. Pre-feedback occipital alpha suppression. a. Shows event-related spectral perturbation (ERSP) time-frequency maps at the electrode Oz (Top) and topographic maps
(the grand-average of alpha (8–13 Hz) ERSP power at the 500-ms window prior to feedback onset) (Bottom) depicting pre-feedback reward-anticipation EEG activity.
Specifically, ERSP activity during Reward and No-Reward trials is depicted in the left and middle columns, respectively. The right column depicts paired t-tests’ (df¼36)
p-values (FDR corrected) for which Reward trial ERSP power was significantly different from No-Reward trial ERSP power. For these p-value maps, the time-frequency map
shows p values at each time and frequency at Oz, while the bottom topo map shows p values at the alpha (8–13 Hz) band at the 500-ms window prior to feedback onset at
every electrode. The time scale in the time-frequency maps is relative to button-presses: 0 ms is when a button was pressed, and 2000 ms is when the feedback was
presented. Note that we computed time-frequency maps from �2000 to 2000 ms (see text). However, for visual proposes, we only show 0–2000 ms here, given our focus on
the time period right before feedback onset. Note also that heat-map scales for time-frequency and topographic maps are different. b. Depicts ERSP at the alpha band (8–
13 Hz) at Oz. c. Shows a scatterplot between Motivated-Learning Inaccurate Estimation (i.e., during the last experimental block) and pre-feedback alpha ERSP (8–13 Hz at the
500-ms window pre-feedback) at Oz. In this scatterplot, pre-feedback alpha ERSP is separated to the ERSP during Reward Trials and No-Reward Trials. Gray areas indicate the
confident interval of 95% around the regression line.
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3.5.2. Feedback-locked theta
ERSP power in the theta frequency (4–7 Hz) was enhanced

during the 200–400 ms window following feedback onset at
frontal-midline sites. This EEG pattern is similar to the profile of
frontal-midline theta (FMT) during outcome-processing reported
in previous studies (Cohen et al., 2007; Luft, 2014). As expected,
there was a main effect of both Reward Evaluation and Perfor-
mance Evaluation (see Fig. 7a and c for ERSP power and Fig. 7b for
p values, FDR corrected). At Fz and other frontal-midline sites,
feedback-locked theta was significantly stronger for Reward-trial,
than No-Reward-trial, feedback. In contrast to feedback-locked
delta, feedback-locked theta was significantly stronger for Bad-
Performance, than Good-Performance, feedback at Fz and other
frontal-midline sites. There was no interaction between Reward
Evaluation and Performance Evaluation on feedback-locked theta
at any frontal-midline sites (for p values, FDR corrected, see
Fig. 7b).

Similar to feedback-locked delta, Motivated-Learning In-
accurate Estimation was negatively correlated with feedback-
locked theta during Reward trials, and there was a marginally



Fig. 6. The influence of reward-evaluation and performance-evaluation on parietal delta ERSP following feedback onset. a. Shows ERSP time-frequency maps at the electrode CPz
and topographic maps (the grand-average of delta ERSP power at 1–3 Hz, 100–500 ms window following feedback onset). ERSP activity locked to feedback onset is separated
into reward evaluation (Reward-Trial vs. No-Reward Trial feedback) and performance evaluation (Bad-Performance vs. Good-Performance feedback). Note that we computed
time-frequency maps from �830 to 1828 ms (see text). However, for visual proposes, we only show �300 to 1000 ms relative to the feedback onset here. Note also that
heat-map scales for time-frequency and topographic maps are different. b depicts p-values (FDR corrected) showing the main effect of Reward Evaluation (Reward Trial vs.
No-Reward Trial), main effect of Performance Evaluation (Bad- vs. Good-Performance) and their interaction. For these p-value maps, the time-frequency map shows p values
at each time and frequency at CPz, while the topographic map shows p values at the delta (1–3 Hz) band at the 100–500 ms window following feedback onset at every
electrode. c. Shows grand-average of delta power (1–3 Hz) at CPz during 100–500 ms window following feedback onset, separated by conditions. Error bars represent
standard error of the mean, corrected for repeated-measure comparison. d. Shows a scatterplot between Motivated-Learning Inaccurate Estimation (i.e., during the last
Experimental block) and feedback-locked delta ERSP (1–3 Hz, 100–500 ms window following feedback onset). In this scatterplot feedback-locked delta ERSP was separated to
the ERSP during the Reward trials and No-Reward trials, collapsing across Bad- and Good-Performance. Gray areas indicate the confident interval of 95% around the
regression line.
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Fig. 7. The influence of reward-evaluation and performance-evaluation on frontal-midline theta ERSP following feedback onset. a. Shows ERSP time-frequency maps at the
electrode Fz and topographic maps (the grand-average of theta ERSP power at 4–7 Hz, 200–400 ms window following feedback onset). ERSP activity locked to feedback onset
is separated into reward evaluation (Reward-trial vs. No-Reward-trial feedback) and performance evaluation (Bad-Performance vs. Good-Performance feedbacks). Note that
we computed time-frequency maps from �830 to 1828 ms (see text). However, for visual proposes, we only show �300 to 1000 ms relative to the feedback onset here. Note
also that heat-map scales for time-frequency and topographic maps are different. b. Depicts p-values (FDR corrected) showing the main effect of Reward Evaluation (Reward
Trial vs. No-Reward Trial), main effect of Performance Evaluation (Bad- vs. Good-Performance) and their interaction. For these p-value maps, the time-frequency map shows
p values at each time and frequency at Fz, while the topographic map shows p values at the theta (4–8 Hz) band at the 200–400 ms window following feedback onset at
every electrode. c. Shows grand-average of theta power (4–7 Hz) at CPz during 200–400 ms window following feedback onset, separated by conditions. Error bars represent
standard error of the mean, corrected for repeated-measure comparison. d. Shows a scatterplot between Motivated-Learning Inaccurate Estimation (i.e., during the last
Experimental block) and feedback-locked theta ERSP (4–7 Hz, 200–400 ms window following feedback onset). In this scatterplot feedback-locked theta ERSP was separated
to the ERSP during the Reward Trials and No-Reward Trials, collapsing across Bad- and Good-Performance. Gray areas indicate the confident interval of 95% around the
regression line.
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Fig. 8. The influence of reward-evaluation and performance-evaluation on parietal beta ERSP following feedback. a. Shows ERSP time-frequency maps at the electrode CPz and
topographic maps (the grand-average of beta ERSP power at 15–25 Hz, 400–600 ms window following feedback onset). ERSP activity locked to feedback onset is separated
into reward evaluation (Reward-trial vs. No-Reward-trial feedback) and performance evaluation (Bad-Performance vs. Good-Performance feedbacks). Note that we com-
puted time-frequency maps from �830 to 1828 ms (see text). However, for visual proposes, we only show 300–700 ms relative to the feedback onset here. This is to
highlight beta activity (15–25 Hz) between 400 and 600 ms. To further highlight ERSP power at the beta band, we also constrains the heat-map scales for the time-frequency
maps to �2 to 2 dB. Note also that heat-map scales for the time-frequency and topographic maps are different. b. Depicts p-values, FDR corrected, showing the main effect of
Reward Evaluation (Reward Trial vs. No-Reward Trial), main effect of Performance Evaluation (Bad- vs. Good-Performance) and their interaction. For these p-value maps, the
time-frequency map shows p values at each time and frequency at CPz, while the topographic map shows p values at the beta (15–25 Hz) band at the 400–600 ms window
following feedback onset at every electrode. c. Shows grand-average of beta power (15–25 Hz) at CPz during 400–600 ms window following feedback onset, separated by
conditions. Error bars represent standard error of the mean, corrected for repeated-measure comparison. d. Shows a scatterplot between Motivated-Learning Inaccurate
Estimation (i.e., during the last Experimental block) and feedback-locked theta ERSP (15–25 Hz) during 400–600 ms window following feedback onset at CPz. The feedback-
locked theta ERSP is separated into the ERSP during the Reward Trials and No-Reward Trials, collapsing across Bad- and Good-Performance. Gray areas indicate the confident
interval of 95% around the regression line.
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Fig. 9. Scatterplots of the correlation between Motivated-Learning Inaccurate Estimation (i.e., during the last experimental block) and ΔReward ERSPs (Reward-trial ERSPs minus
No-Reward-trial ERSPs). Note that higher Motivated-Learning Inaccurate Estimation values reflect worse time-estimation performance during the last Experimental block.
Potentials bivariate outliers were detected using Minimum Covariance Determinant (MCD), and represented by red data points. Ellipses contain non-outlying data. Pink
shaded areas represent 95% bootstrapped confident intervals around the linear regression line after the potential bivariate outliers were removed. Importantly, all of the
correlations presented below remain significant, with or without bivariate outlier removal, suggesting the robustness of the relationship. a. Represents the correlation
between Motivated-Learning Inaccurate Estimation and ΔReward cue-locked delta (Reward-trial cue-locked delta minus No-Reward-trial cue-locked delta). The correlation
coefficient was significant both before (r(34)¼�0.36, p¼0.03) and after (r(32)¼�0.39, p¼0.02) bivariate outliers removal. b. Represents the correlation between Moti-
vated-Learning Inaccurate Estimation and ΔReward feedback-locked delta (Reward-trial cue-locked delta minus No-Reward-trial cue-locked delta, collapsing across Bad- and
Good-Performance feedback). The correlation coefficient was significant both before (r(34)¼�0.47, p¼0.004) and after (r(31)¼�0.65, po .001) bivariate outliers removal. c.
Represents the correlation between Motivated-Learning Inaccurate Estimation and ΔReward feedback-locked theta (Reward-trial cue-locked theta minus No-Reward-trial
cue-locked theta, collapsing across Bad- and Good-Performance feedbacks). The correlation coefficient was significant both before (r(34)¼�0.56, po .001) and after (r
(33)¼�0.45, p ¼0.007) bivariate outliers removal. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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significant negative correlation between Motivated-Learning In-
accurate Estimation and feedback-locked theta during No-Reward
trials (see Table 1 and Fig. 7d). Similar toΔReward cue-locked and
feedback-locked delta, ΔReward feedback-locked (Reward minus
No-Reward-trial) theta was also negatively correlated with Moti-
vated-Learning Inaccurate Estimation (see Table 1 and Fig. 9c).
There was, however, no relationship between ΔPerformance (Bad
minus Good-Performance) feedback-locked theta and Motivated-
Learning Inaccurate Estimation. Control Inaccurate Estimation was
not predicted by any of the feedback-locked theta indices (see
Table 1). Together, this suggests that enhanced feedback-locked
theta power to Reward-trial (compared to the No-Reward-trial)
feedback was associated with a better adjustment of time-esti-
mation performance (reflected by smaller Motivated-Learning In-
accurate Estimation).

In contrast to cue-locked and feedback-locked delta, but similar
to pre-feedback alpha, feedback-locked theta was related to delay-
discounting tendencies. Specifically, ln (k) was negatively corre-
lated with feedback-locked theta during Reward trials, and there
was a marginally significant negative correlation between
ln (k) and feedback-locked theta during No-Reward trials (Table 1).
Moreover, while the relationship between the ΔPerformance
feedback-locked theta and ln (k) was not significant, there was a
significant negative relationship between the ΔReward feedback-
locked theta and ln (k) (Table 1). Thus, participants with stronger
feedback-locked theta power following Reward-trial, compared to
No-Reward-trial, feedback (i.e., more positive ΔReward feedback-
locked theta) had smaller k values (i.e., stronger preference toward
larger-but-delayed rewards). To investigate the specificity of this
relationship, we examined correlations between ln (k) and the
ΔReward feedback-locked theta following Bad-Performance
feedback separately from ΔReward feedback-locked theta fol-
lowing Good-Performance feedback. Ln(k) was negatively corre-
lated with the ΔReward feedback-locked theta following Good-
Performance feedback, r(35)¼� .44, p¼ .006 (Fig. 11), but not with
the ΔReward feedback-locked theta following Bad-Performance
feedback, r(35)¼� .14, p¼ .39.

3.5.3. Feedback-locked beta
Feedback-locked beta power (15–25 Hz) was reduced starting

approximately 200 ms after feedback onset at parietal sites (see
Fig. 8a and c for ERSP power). This is similar to a pattern of beta



Fig. 10. Scatterplot of the correlation between delay-discounting tendencies [ln (k)]
and Δalpha-suppression (Reward-trial Alpha activity minus No-Reward-trial Alpha
activity) prior to the feedback onset. Note that, the more negative the Δalpha-sup-
pression, the greater the suppression of alpha activity during Reward trials (relative
to No-Reward trials). Potentials bivariate outliers were detected using Minimum
Covariance Determinant (MCD), and represented by red data points. Ellipse con-
tains non-outlying data. Pink shaded areas represent 95% bootstrapped confident
intervals around the linear regression line after the potential bivariate outliers were
removed. The correlation coefficient was significant both before (r(35)¼0.40,
p¼0.01) and after (r(33)¼0.36, p¼0.03) bivariate outliers removal. This suggests
that the potential outliers did not drive the correlation. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 11. Scatterplot of the correlation between delay-discounting tendencies [ln (k)] the
ΔReward feedback-locked theta (Reward-trial feedback-locked theta minus No-Re-
ward-trial feedback-locked theta) following Good-Performance feedback. Note that,
the more positive the ΔReward feedback-locked theta, the stronger the theta power
during Reward trials (relative to No-Reward trials). Potentials bivariate outliers
were detected using Minimum Covariance Determinant (MCD), and represented by
red data points. Ellipse contains non-outlying data. Pink shaded areas represent
95% bootstrapped confident intervals around the linear regression line after the
potential bivariate outliers were removed. The correlation coefficient was sig-
nificant both before (r(35)¼� .44, p¼0.006) and after (r(32)¼� .49, p¼0.003)
bivariate outliers removal. This suggests that the potential outliers did not drive the
correlation. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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desyncronization found in a recent time-estimation study (Luft
et al., 2013a). Significant main effects of both Reward Evaluation
and Performance Evaluation on feedback-locked beta were found at
approximately 400–600 ms following feedback onset (see Fig. 8b for
p values, FDR corrected). Specifically, for Reward Evaluation, feed-
back-locked beta was less reduced during Reward trials than No-
Reward trials. Moreover, for Feedback Evaluation, feedback-locked
beta was less reduced following Good-Performance feedback,
compared to following Bad-Performance feedback. There was a
trend for the Reward Evaluation by Performance Evaluation inter-
action, but this interaction did not survive FDR correction. Thus, we
collapsed across Good-Performance and Bad-Performance feedback
when employing feedback-locked beta as an index for individual
differences in Reward Evaluation at this frequency band.

Similar to feedback-locked delta and theta, Motivated-Learning
Inaccurate Estimation was negatively correlated with feedback-
locked beta during Reward trials, and was marginally correlated
with feedback-locked beta during No-Reward trials (see Table 1
and Fig. 8d). Nonetheless, neither ΔReward feedback-locked (Re-
ward minus No-Reward-trial) beta or ΔPerformance feedback-
locked (Bad- minus Good-Performance) beta was correlated with
Motivated-Learning Inaccurate Estimation (see Table 1). Ad-
ditionally, Control Inaccurate Estimation was not predicted by any
feedback-locked beta indices (see Table 1). Similar to pre-feedback
alpha, this suggests that a smaller reduction in feedback-locked
beta was related to better adjustment of time-estimation perfor-
mance (i.e., smaller Motivated-Learning Inaccurate Estimation).
However, the relationship between feedback-locked beta and
Motivated-Learning Inaccurate Estimation does not appear to be
unique to Reward trials.

Similar to pre-feedback alpha and feedback-locked theta, there
was a relationship between feedback-locked beta and delay-dis-
counting tendencies (see Table 1). Specifically, Ln(k) was nega-
tively correlated with feedback-locked beta during both Reward
and No-Reward trials. Thus, participants with stronger (i.e., less of
a reduction in) feedback-locked beta power had smaller k values
(i.e., stronger preference toward larger-but-delayed rewards), re-
gardless of whether it was a Reward-trial or No-Reward-trial
feedback. Moreover, while the correlation coefficient between Ln
(k) and ΔReward (Reward-trial minus No-Reward-trial) feedback-
locked beta was not significant, r(35)¼� .25, p¼ .13, the correla-
tion became significant after one bivariate outlier was removed, r
(34)¼� .36, p¼ .03 (see Fig. 12). We employed the Minimum
Covariance Determinant (MCD) estimator (Rousseeuw and Dries-
sen, 1999) to detect this bivariate outlier, using the Robust Corre-
lation and LIBRA toolboxes in Matlab (Pernet et al., 2012; Verboven
and Hubert, 2005). This so-called skipped correlation method is a
robust parametric method designed for controlling for outliers
while preserving statistical power compared to non-parametric
method (Rousseeuw, 1984; Wilcox, 2012). Thus, participants with
less of a reduction in feedback-locked beta power following Re-
ward-trial, compared to No-Reward-trial, feedback (i.e., more po-
sitive ΔReward feedback-locked beta) had smaller k values. To
investigate the specificity of this relationship, we removed the
outlier and examined correlations between ln (k) and the ΔRe-
ward feedback-locked beta following Bad-Performance feedback
separately from the ΔReward feedback-locked beta following
Good-Performance feedback. Ln(k) was marginally correlated with
the ΔReward feedback-locked beta following Good-Performance
feedbacks, r(34)¼� .30, p¼ .07, but not with the ΔReward feed-
back-locked beta following Bad-Performance feedbacks, r
(34)¼� .11, p¼ .53. Additionally, the correlation between ΔPer-
formance (Bad- minus Good-Performance) feedback-locked beta
and ln (k) was not significant.

3.6. Delay-discounting responses as predicted by multiple reward-
processing eeg activity

Because multiple ΔReward (Reward- minus No-Reward-trial)
EEG indices were correlated with ln (k), an additional multiple-
regression analysis was used to assess for shared vs. unique effects
of these EEG indices (see Table 2). The ΔReward EEG indices in-
cluded in this multiple-regression analysis were ΔReward pre-
feedback alpha, ΔReward feedback-locked theta following Good-



Fig. 12. Scatterplot of the correlation between delay-discounting tendencies [ln (k)]
the ΔReward feedback-locked beta (Reward-trial feedback-locked beta minus No-Re-
ward-trial feedback-locked beta), collapsing across Bad- and Good-Performance feed-
backs. Note that, the more positive the ΔReward feedback-locked beta, the stronger
the theta power during Reward trials (relative to No-Reward trials). Potentials bi-
variate outliers were detected using Minimum Covariance Determinant (MCD), and
represented by red data points. Ellipses contain non-outlying data. Pink shaded
areas represent 95% bootstrapped confident intervals around the linear regression
line after the potential bivariate outliers were removed. While the Pearson zero-
order correlation coefficient was not significant (r(35)¼� .25, p¼0.13), the corre-
lation became significant after one bivariate outlier was removed (r(34)¼� .36,
p¼0.03). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Table 2
Multiple regression analyses for ΔReward (Reward-trial minus No-reward-trial)
EEG indices predicting ln (k).

B SE B β P Tolerance VIF

Constant �3.87 .32 o .001
ΔReward pre-feedback alpha .30 .25 .21 .23 .71 1.41
ΔReward feedback-locked
theta following Good-Per-
formance feedback

� .37 .18 � .36 .04 .71 1.42

ΔReward feedback-locked beta
(collapsing across Bad- and
Good-Performance
feedback)

� .75 .39 � .28 .06a .99 1.01

Note. R2¼ .31 (p¼ .006); Collinearity statistics (Tolerance and VIF) indicate that
multicollinearity between the predictors was not a concern.

a Became significant (p¼ .03) after a bivariate outlier was removed (see Fig. 12).

Table 3
Zero-order correlations among ΔReward (Reward-trial minus No-reward-trial) EEG
indices that predicted ln (k).

1) 2) 3)

1) ΔReward pre-feedback alpha – � .54*** .003
2) ΔReward feedback-locked theta following Good-Perfor-
mance feedback

– – � .10

3) ΔReward feedback-locked beta (collapsing across Bad-
and Good-Performance feedback)

– – –

*** po .001 (2-tailed).
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Performance feedback and ΔReward feedback-locked beta (col-
lapsing across Bad- and Good-Performance feedback). First, we
examined the correlations among these indices (see Table 3), and
found that ΔReward pre-feedback alpha and ΔReward feedback-
locked theta following Good-Performance feedback were corre-
lated with each other. However, ΔReward feedback-locked beta
was not correlated with either ΔReward pre-feedback alpha or
ΔReward feedback-locked theta following Good-Performance
feedback. Then, the three ΔReward EEG indices were entered as
simultaneous predictors with ln (k) as a criterion. In this model,
while ΔReward pre-feedback alpha was not significant, ΔReward
feedback-locked theta following Good-Performance feedback was
significant, and ΔReward feedback-locked beta was marginally
significant (p¼ .06). Because ΔReward pre-feedback alpha and
ΔReward feedback-locked theta following Good-Performance
feedback were correlated with each other (but not with ΔReward
feedback-locked beta), these two EEG indices may account for si-
milar variance in ln (k). However, this variance in ln (k) was unique
from that of ΔReward feedback-locked beta.
4. Discussion

The current study tested the relationship between individual
differences in delay-discounting tendencies and reward-proces-
sing at specific temporal stages. To operationalize individual dif-
ferences in reward-processing, we examined EEG activity during a
reward time estimation task. Our use of time- and frequency-
specific EEG measures allowed us to separately investigate in-
dividual differences in reward-processing at the reward-anticipa-
tion stage (including, cued-locked delta during cue-evaluation and
pre-feedback alpha suppression during feedback-anticipation) and
at the reward-outcome stage (including, feedback-locked delta,
theta and beta). All of our EEG indices were elevated during Re-
ward, compared to No-Reward, trials. Moreover, these EEG indices
significantly predicted behavioral performance during the time
estimation task (reflected by smaller Motivated-Learning In-
accurate Estimation), highlighting their essential roles in mod-
ulating performance during a motivated-learning situation.
4.1. Reward-processing and individual differences in delay-dis-
counting responses

Overall, results supported our primary hypotheses regarding
the relationship between enhanced reward-processing and a
stronger preference toward larger-but-delayed, over smaller-but-
immediate, rewards (i.e., smaller ln (k) or less delay-discounting).
Behaviorally, people who were motivated to learn through feed-
back over the course of the experiment (reflected by having
smaller Motivated-Learning Inaccurate Estimation) had a stronger
preference toward larger-but-delayed. Neurally, people whose EEG
activity was particularly enhanced during Reward trials at various
stages (reflected by having stronger pre-feedback alpha-suppres-
sion during feedback-anticipation in the reward-anticipation
stage, and stronger feedback-locked theta and beta during the
reward-outcome stage) also expressed a stronger preference to-
ward larger-but-delayed rewards. More specifically, frommultiple-
regression results, it appears that two sets of EEG indices (pre-
feedback alpha-suppression and feedback-locked theta vs. feed-
back-locked beta) independently modulated individual differences
in delay-discounting responses. This suggests that different neur-
al-cognitive mechanisms during reward processing are related to
delay-discounting tendencies.

The observed bias toward larger-but-delayed rewards among
individuals with elevated reward-processing is consistent with a
number of previous studies (although see Hariri et al. (2006) for
contradictory finding). First, a recent fMRI study reported a bias
toward larger-but-delayed rewards among adolescents with ele-
vated ventral striatal (VS) activation during reward anticipation
using the MID task (Benningfield et al., 2014). Other fMRI studies
have also found a relationship between elevated activation in the VS
and other reward-related areas, such as the lateral orbitofrontal
cortex (L-OFC), and a stronger preference toward larger-but-delayed
rewards (Ballard and Knutson, 2009; Boettiger et al., 2007; Sama-
nez-Larkin et al., 2011). Second, animal research has shown that
lesions to the VS, resulting in reduced reward-related neural acti-
vation, leads to a preference for smaller-but-immediate rewards
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(Cardinal et al., 2001). Third, psychiatric and health-related research
has shown that dampened reward sensitivity and reduced reward-
related brain function is a risk factor for high-risk and poor health
related behaviors (Johnson and Kenny, 2010; Stice et al., 2008).
These data have been conceptualized within the Reward Deficiency
Model of addiction, which proposes that persons with low reward
sensitivity self-medicate negative emotions and/or attempt to ele-
vate positive emotions through pursuing high-risk, short-term re-
wards (e.g., drugs, alcohol, high-fat diets) (Blum et al., 2000; Volk-
ow et al., 2012). The logic of the Reward Deficiency Model is con-
sistent with our results given that participants with reduced re-
ward-related EEG activity in the present study had a stronger pre-
ference for smaller-but-immediate rewards. Additionally, in-
dividuals with the Met-allele of the COMT-gene, which has been
associated with elevated reward-related brain function (Chen et al.,
2004; Yacubian et al., 2007), show a preference for larger-but-de-
layed reward (Boettiger et al., 2007; Gianotti et al., 2012; Smith and
Boettiger, 2012; Yacubian et al., 2007). Similarly, a recent study also
found a stronger preference toward larger-but-delayed rewards as a
result of medications designed to increase dopamine signaling in
patients with Parkinson's disease (Foerde et al., 2016). Thus, com-
bined with results from the present study, we argue that there is
growing evidence that elevated reward-processing is associated
with a higher propensity to forgo smaller-but-immediate rewards,
in favor of larger-but-delayed rewards.

4.2. EEG indices at each stage of reward-processing

Our use of EEG extends previous fMRI findings (Benningfield
et al., 2014) by providing a more time-sensitive index of reward-
related neural activity, allowing us to demonstrate the nature of
the relationship between delay-discounting and reward-proces-
sing at specific temporal stages (e.g., during feedback-anticipation
and reward outcome, but not cue-evaluation). Owing to the time-
frequency decomposition of the EEG data, we also were able to
show that these relationships were quite sensitive to specific
neural frequency bands (e.g., theta, alpha and beta, but not delta).

4.2.1. Pre-feedback alpha-suppression during the reward time esti-
mation task

With respect to feedback-anticipation EEG activity, we found a
clear pattern of pre-feedback occipital alpha suppression peaking
right before feedback onset. This pattern is consistent with pre-
vious reports suggesting that occipital alpha suppression prior to
upcoming visual stimuli indexes anticipatory processes (Bas-
tiaansen et al., 1999; Hughes et al., 2013; Pfurtscheller and Ara-
nibar, 1977). Also consistent with previous research (Hanslmayr
et al., 2007; Hughes et al., 2013; van den Berg et al., 2014), occipital
alpha suppression was modulated by reward conditions, as we
observed greater alpha suppression during Reward, compared to
No-Reward, trials.3 These findings are in line with the recent
3 Based on our design, we argue that stronger alpha-suppression during Re-
ward (compared to No-Reward) trials was driven by the motivationally salient
aspect (as opposed to uncertainty aspect) of the upcoming feedback in the Reward
trials. Unlike previous studies that manipulated uncertainty and found the mod-
ulation of uncertainty on a stimulus-preceding negativity (SPN) ERP component
(Catena et al., 2012; Morís et al., 2013), our study controlled for uncertainty. That is,
for both Reward and No-Reward trials, the only source of uncertainty during
feedback-anticipation facing participants was whether their recent performance
would be considered good or bad. Because of our adaptation method, the accuracy
rates during Reward trials (M¼52.42%, SD¼5.23) and No-Reward trials
(M¼48.07%, SD¼4.75) were closely matched at 50% chance. Hence, the uncertainty
between the two reward conditions was controlled at around a chance level. This
means that once a participant pressed the time-estimation button, it was equally
likely for them to see bad- vs. good-performance feedback during both Reward and
No-Reward trials. The bad and good-performance feedback, however, was more
meaningful and motivationally salient during Reward trials than No-Reward trials,
perspective that occipital alpha suppression indexes enhanced
attentional processes during the anticipation of reward-related
stimuli/feedback, and that this enhanced attentional processing is
associated with individual differences in reward-processing (van
den Berg et al., 2014). Moreover, our study is among the first to
demonstrate that pre-feedback alpha suppression predicts en-
hanced motivated-learning during a reward task (reflected by
smaller Motivated-Learning Inaccurate Estimation). This suggests
enhanced attentional processing prior to feedback facilitates
learning and behavioral adjustment to maximize rewards .

4.2.2. Pre-feedback alpha-suppression and delay-discounting
responses

Most importantly, however, is the fact that stronger occipital
alpha suppression, reflecting elevated feedback-anticipation
neural activity, was associated with a greater preference toward
larger-but-delayed rewards during the delay-discounting task.
Given the temporal and frequency precision afforded by our EEG
time-estimation paradigm, we were able to dissociate neural ac-
tivity during reward feedback-anticipation from other reward-
anticipation processes (e.g., cue-evaluation and motor-prepara-
tion). This degree of temporal precision is not feasible with fMRI
studies of reward processing using paradigms such as the MID task
(Benningfield et al., 2014), given the slow dynamics of the fMRI
BOLD signal. We argue that the neurophysiological index of re-
ward-anticipation neural activity related to delay-discounting re-
sponses in the present study (i.e., occipital alpha suppression)
reflects the dis-inhibition of neural activity in sensory cortices that
facilitate anticipatory attention to reward-related feedbacks
(Hughes et al., 2013; Jensen and Mazaheri, 2010; van den Berg
et al., 2014). Future research with alpha-suppression prior to
feedback onset will have important implications for unpacking the
nuances of reward-anticipation, particularly when aiming to con-
trol for other relevant processes, such as reward cue-evaluation or
motor-preparation.

4.2.3. Reward-outcome EEG activity
With respect to reward-outcome EEG activity during the re-

ward time-estimation task, we found that EEG activity in two
frequency bands (feedback-locked theta and beta) were associated
with individual differences in delay-discounting. Importantly, our
study is among the first to separate the influence of reward-eva-
luation from performance-evaluation on individual differences in
reward-outcome EEG activity (Leicht et al., 2013). Most studies of
individual-differences of reward-outcome EEG data collapse across
these two factors (e.g., Bress and Hajcak, 2013; Bress et al., 2012;
Foti and Hajcak, 2009; Van den Berg et al., 2011). For instance, in
several studies, good-performance feedback also indicates the
wining of a monetary reward, while bad-performance feedback
implies no-wining/losing of monetary reward. This makes it dif-
ficult to dissociate whether individual differences in outcome EEG
data are driven by variability in reward-feedback evaluation, per-
formance-feedback evaluation, or some combination of the two
(Luft, 2014).

4.2.4. Feedback-locked theta during the reward time estimation task
For feedback-locked theta, our findings are in line with pre-

vious research suggesting that feedback-locked theta is sensitive
to both reward- (Leicht et al., 2013) and performance- (Cohen
et al., 2007; Luft, 2014) evaluation. Specifically, for reward eva-
luation, we observed greater feedback-locked theta during Reward
(footnote continued)
given that performance information during Reward trials indicated monetary-re-
ward earnings.



N. Pornpattananangkul, R. Nusslock / Neuropsychologia 91 (2016) 141–162 159
trials (compared to No-Reward trials). For performance evaluation,
greater feedback-locked theta was found in response to Bad-Per-
formance (compared to Good-Performance) feedback. These two
main effects were independent of each other given the absence of
a reward-by-performance evaluation interaction. Consistent with
previous studies, feedback-locked theta predicted behavioral per-
formance in our reward-learning task (Cavanagh and Shackman,
2015; van de Vijver et al., 2011). This confirms the role of feedback-
locked theta in cognitive-control processes that incorporate feed-
back/outcome information (Luft, 2014). More importantly, by se-
parating reward from performance evaluation, we demonstrated
for the first time that reward evaluation (i.e., ΔReward feedback-
locked theta), but not performance evaluation (i.e., ΔPerformance
feedback-locked theta) predicted enhanced motivated-learning
during a reward task (reflected by smaller Motivated-Learning
Inaccurate Estimation). This suggests that the enhancement of
cognitive-control during Reward (compared to No-Reward) trials
facilitates one's ability to learn through feedback in a reward si-
tuation to maximize reward receipt.

4.2.5. Feedback-locked theta and delay-discounting responses
Similarly, reward evaluation (but not performance evaluation)

of feedback-locked theta predicted a greater preference to larger-
but-delayed rewards. This may indicate that enhanced cognitive-
control processes during Reward trials (reflected by reward eva-
luation), as opposed to prediction error or uncertainty resolution
(reflected by performance evaluation), drove the relationship be-
tween reward-processing and delay-discounting responses.
Moreover, subsequent analyses indicated that the relationship
between ΔReward feedback-locked theta and delay-discounting
responses was primarily driven by ΔReward feedback-locked to
Good-Performance, but not Bad-Performance, feedback. This sug-
gests that a preference toward larger-but-delayed rewards is par-
ticularly related to theta activity in the gain, but not the no-gain,
domain, highlighting the fact that this relationship is specific to a
reward-processing context.

4.2.6. Feedback-locked beta during the reward time estimation task
As for feedback-locked beta, our findings are consistent with

studies showing stronger beta power (less reduction/desyncroni-
zation) to positive (compared to negative) feedback (for review,
see Luft (2014)). By separating reward from performance evalua-
tion, we extend previous research on feedback-locked beta power
by showing the effect of both reward (stronger during Reward
trials) and performance (stronger to Good-Performance feedback)
evaluation. Additionally, greater enhancement of feedback-locked
beta predicted enhanced motivated-learning during a reward task,
replicating a previous time-estimation study (Luft et al., 2013a).
Altogether, this pattern of feedback-locked beta is in line with the
interpretation of this EEG index as a reward-specific signal (Cohen
et al., 2007; De Pascalis et al., 2012; HajiHosseini et al., 2012;
Marco-Pallares et al., 2008; Marco-Pallarés et al., 2009).

4.2.7. Feedback-locked beta and delay-discounting responses
Relating to our main focus on delay discounting, we demon-

strate for the first time that reward evaluation (but not perfor-
mance evaluation) of feedback-locked beta predicted a greater
preference to larger-but-delayed rewards. This suggests that in-
dividual differences in delay-discounting may be related to the
motivational saliency of the feedback (i.e., during Reward trials) as
opposed to the positive behavioral performance signal from the
feedback (i.e., a Good-Performance feedback).

4.2.8. Cue-locked and feedback-locked delta during the reward time
estimation task

Although cue-locked delta and feedback-locked delta did not
predict delay-discounting tendencies, the present study provides
additional insight into to their roles in reward-processing. During
cue-evaluation in the reward-anticipation stage, cue-locked delta
was stronger during Reward, compared to No-Reward, trials. This
pattern is consistent with previous research focusing on a P3
component elicited by reward-related cues at similar time and
topography (Broyd et al., 2012; Goldstein et al., 2006; Ramsey and
Finn, 1997; Santesso et al., 2012). In line with a recent reinforce-
ment study (Cavanagh, 2015), cue-locked delta predicted en-
hanced motivated-learning in our reward task (reflected by
smaller Motivated-Learning Inaccurate Estimation). More im-
portantly, motivated-learning was predicted by cue-locked delta
power to the Reward cue (i.e., ΔReward cue-locked delta), sug-
gesting an essential role of cue-locked delta in reward-processing,
not just cue-evaluation in general. As for feedback-locked delta
during the reward-outcome stage, similar to feedback-locked beta,
we found an effect of both reward evaluation (stronger during
Reward trials) and performance evaluation (stronger to Good-
Performance feedbacks). This extends previous research that col-
lapsed the two evaluation types together (Cavanagh, 2015; Foti
et al., 2015; Leicht et al., 2013). More specifically, reward evalua-
tion (ΔReward feedback-locked delta) of feedback-locked delta
(not performance evaluation) predicted motivated-learning during
the reward time-estimation task. This suggests that higher sensi-
tivity to the motivational saliency of the feedback (reflected by
stronger ΔReward feedback-locked delta) facilitates one's ability
to learn through feedback and adjust their performance to max-
imize gains. Taken together with other EEG indices, our study
provides a comprehensive overview of reward-processing neural
activity across specific temporal stages.

4.2.9. Relationship among reward-processing ERSP indices
We also report, for the first time, a relationship between re-

ward-processing during feedback-anticipation (ΔReward pre-
feedback alpha) and during reward-outcome (ΔReward feedback-
locked theta following Good-Performance feedback) (see Table 3).
ΔReward pre-feedback alpha, however, did not correlate with
ΔReward feedback-locked beta. This suggests that enhanced at-
tentional processes prior to feedback (pre-feedback alpha sup-
pression) was specifically related to enhanced cognitive-control
processes during evaluation of reward-outcome (feedback-locked
theta).

4.3. Limitations

This study is not without its limitations. First, similar to pre-
vious fMRI research on delay discounting and reward-related
neural activity (Benningfield et al., 2014), our reward task did not
include a punishment condition. Given that our focus was on in-
dividual differences in reward-processing, we were concerned that
adding a punishment condition would unnecessarily lengthen the
task. Task length is an important issue given fatigue has been
shown to attenuate reward-related EEG data (Boksem and Tops,
2008). Future research involving a punishment condition is nee-
ded to examine whether the relationship between delay dis-
counting and reward-related neural activity is primarily driven by
a sensitivity to rewarding stimuli, or by a more general sensitivity
to arousing or motivationally salient stimuli. Second, using un-
dergraduate students may restrict the range of individual differ-
ences in impulsivity compared to other populations (Henrich et al.,
2010). This is important, given that individual differences in im-
pulsivity are associated with delay-discounting as well as reward-
processing (e.g., Bjork et al., 2008; Hahn et al., 2009; for a review
see Plichta and Scheres (2014)). Future research may employ other
populations to further investigate whether the relationship be-
tween reward-related EEG activity and delay-discounting
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manifests differently among individuals with high (e.g., hypoma-
nia) or low (e.g., depression) in impulsivity.

An important future direction is to examine the relationship
between individual differences in reward-processing EEG activity
at specific temporal stages to personality indices of reward sen-
sitivity more generally. One of the most wildly used personality
theories of reward-sensitivity is Gray's biopsychological theory of
personality (Gray, 1987, 1989). In particular, Gray proposed that
the behavioral activation system (BAS) underlies individual dif-
ferences in appetitive motivation. Later personality researchers
have separated the BAS into three subtypes: BAS Drive, Fun
Seeking and Reward Responsiveness (Carver and White, 1994). The
main difference between Gray's BAS reward-sensitivity and re-
ward-processing used in the current study is that Gray did not
separate BAS into temporal reward-processing stages as is com-
mon in contemporary neuroscientific theories (Berridge, 1996;
McClure et al., 2004; Schultz et al., 2000; Wise, 2008). Accordingly,
it is unclear how Gray's theory and the three proposed BAS sub-
types map onto individual differences in reward-processing across
each specific temporal stage of reward processing. Future research
is needed to examine these relationships. Additionally, the time-
estimation reward task used in the present study only provides
immediate rewards, and does not provide delayed rewards. The
delay-discounting task, by contrast, involves both immediate and
delayed reward choices. Accordingly, we were only able to in-
vestigate the relationship between delay-discounting responses
and neural activity to immediate-reward stimuli. Future research
may wish to vary whether rewards are delivered immediately or
following a delay, as in previous research (Cherniawsky and Hol-
royd, 2013). Similarly, while the delay-discounting task in the
present study employed hypothetical monetary rewards, the time-
estimation reward task employed real monetary rewards. Al-
though previous studies suggest a similarity between hypothetical
and real monetary rewards in the delay-discounting task (M. W.
Johnson and Bickel, 2002; Lagorio and Madden, 2005), future re-
search should employ real monetary rewards in both tasks to test
the generalizability of our findings.
5. Conclusions

In conclusion, one of the multiple factors that may modulate
individual differences in delay-discounting responses is reward-
processing. To comprehensively study individual differences in
reward-processing, however, one needs to consider its hetero-
geneity in temporal dynamics. Here using EEG, we were able to
separate reward-processing neural activity at each temporal stage
into different indices based on time and frequency dimensions. In
line with recent research (Benningfield et al., 2014; Boettiger et al.,
2007; Foerde et al., 2016), we found that a stronger preference
toward larger-but-delayed rewards was associated with enhanced
reward-related neural activity at specific stages of reward-pro-
cessing. Our findings not only substantiate the association be-
tween individual differences in delay-discounting responses and
reward-processing, but also provide specific details about which
stages of reward-processing drive these associations.
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