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A B S T R A C T

In making decisions under risk (i.e., choosing whether to gamble when the outcome probabilities are known), two
aspects of decision are of particular concern. The first, if gambling, is how large are potential gains compared to
losses? The subjectively larger, the more rewarding to gamble. Thus, this aspect of decision-making, quantified
through expected utility (EU), is motivation-related. The second concern is how easy is it to reach the decision?
When subjective desirability between gambling and not-gambling is clearly different from each other (regardless
of the direction), it is easier to decide. This aspect, quantified through utility distance (UD), is conflict-related. It is
unclear how the brain simultaneously processes these two aspects of decision-making. Forty-five participants
decided whether to gamble during electroencephalogram (EEG) recording. To compute trial-by-trial variability in
EU and UD, we fit participants' choices to models inspired by Expected-Utility and Prospect theories using
hierarchical-Bayesian modeling. To examine unique influences of EU and UD, we conducted model-based single-
trial EEG analyses with EU and UD as simultaneous regressors. While both EU and UD were positively associated
with P3-like activity and delta-band power, the contribution of EU was around 200ms earlier. Thus, during
decision-making under risk, people may allocate their attention to motivation-related aspects before conflict-
related aspects. Next, following learning the options and before reporting their decision, higher EU was associ-
ated with stronger alpha and beta suppression, while higher UD was associated with a stronger contingent-
negativity-variation-like activity. This suggests distinct roles of EU and UD on anticipation-related processes.
Overall, we identified time and frequency characteristics of EEG signals that differentially traced motivation-
related and conflict-related information during decision-making under risk.
1. Introduction

Should one gamble when the chance of winning and losing is 50-50?
Neoclassical economists consider this scenario as decision-making under
risk (Von Neumann andMorgenstern, 1944). According to their Expected
Utility theory, people decompose each choice into 1) utility (subjective
un/desirability) and 2) probability (likelihoods of occurrence) of its
possible outcomes. Utility and probability form expected utility (EU or
predicted subjective desirability). Individuals then are assumed to
maximize EU by accepting the gamble only when gambling has higher EU
than not gambling. Cognitive psychologists, Tversky and Kahneman
(1991), later discovered that when making decisions under risk in situ-
ations involving both potential gains and losses, people typically weigh
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potential losses higher, a phenomenon called loss-aversion. Accordingly,
to accommodate loss-aversion in their Prospect theory, Tversky and
Kahneman (1971) further modified neoclassical economists' concept of
EU using a function to weight the subjective undesirability involving
potential losses. Inspired by Expected Utility and Prospect theories,
several fMRI studies have examined the neural correlates of EU of risky
choices using various gambling tasks (Glimcher and Fehr, 2014). These
fMRI studies typically show positive relationships between EU of risky
choices and BOLD activity in regions, such as the middle-frontal gyrus
and striatum (Levy et al., 2010; Sokol-Hessner et al., 2013), suggesting
the existence of a reward-evaluation network that tracts predicted
desirability of risky choices.

Yet, focusing only on EU of risky choices and BOLD activity may not
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Abbreviations

BOLD blood-oxygen-level dependent imaging
CNV contingent negativity variation
EEG electroencephalogram
ERP event-related-potential
ERSP event-related-spectral-perturbation
EU expected utility
EV expected value
FMT frontal-midline theta power
HBA hierarchical Bayesian analysis
HMC Hamiltonian Monte Carlo
ISI inter-stimulus interval
ITI inter-trial interval
LME Linear-mixed effect
LOOIC Leave-One-Out Information Criterion
MCMC Markov Chain Monte Carlo
MLE maximum likelihood estimation
UD utility distance
VD value distance
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provide a complete picture of neural-cognitive processes underlying
decision-making under risk. For instance, in the above gambling scenario
when the probability of potential gains and losses is the same (i.e., 50-
50), EU can be inferred from the relative difference in utility between
gambling and not gambling choices. Higher EU for gambling (compared
to not gambling) indicates that predicted subjective desirability for po-
tential gains/rewards offsets predicted subjective undesirability for po-
tential losses/punishments, and therefore predicts higher tendencies to
gamble. Thus, the EU of risky choices reflects motivation-related (i.e.,
accepting vs. rejecting the gamble) and valence-specific (i.e., reward vs.
punishment) information (Bartra et al., 2013). However, each decision
also varies in the ease of making it. For instance, in the same gambling
scenario, it should be easier to make decisions when the potential losses
are much larger than the potential gains (likely resulting in a decision to
not gamble) and when the potential gains are much larger than the po-
tential losses (likely resulting in a decision to gamble). This ease in
making a decision is conflict-related (i.e., easy vs. difficult) and is re-
flected in the absolute (i.e., unsigned) difference in utility between
gambling and not gambling choices. We referred to the ease of making
decisions here as the utility distance (UD). Specifically, higher UD re-
flects higher ease of decision-making (lower choice conflict), but does not
predict which choice to choose, making it valence-non-specific (i.e., UD
could be higher when either potential reward or punishment is much
larger than the other).

It is unknown how the brain simultaneously processes EU and UD
during decision-making under risk. Due to the slowness of BOLD, fMRI
may not be an ideal method to disentangle the processing of EU and UD
information over time. To capture temporally precise neural dynamics
associated with EU and UD, a method with higher temporal resolution
like electroencephalogram (EEG) is more appropriate. The rich timing
information afforded by EEG may inform us about the speed at which the
brain processes EU and UD information. Furthermore, EEG provides
multidimensional data (in terms of time, frequency and topography) that
may capture distinct neural-cognitive processes involved in EU and UD
processing (Buzs�aki, 2006; Cohen, 2014; Glazer et al., 2018). For
instance, studies often link the centro-parietal P3 event-related-potential
(ERP) and its related delta-band event-related-spectral-perturbation
(ERSP) to stimulus evaluation and attentional resource allocation (Kissler
et al., 2009; Polich, 2007; Schupp et al., 2006). Accordingly, investi-
gating the timing of P3 and delta-power may help assess whether the
brain allocates attentional resources to motivation-related and
valence-specific information (EU) sooner or later than to conflict-related
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and valence-non-specific information (UD) when evaluating choices
under risk. Additionally, researchers associate anticipatory processes
with different EEG patterns, such as the alpha-band suppression (Hughes
et al., 2013; Pornpattananangkul and Nusslock, 2016), beta-band sup-
pression (Do~namayor et al., 2012; Meyniel and Pessiglione, 2013) and
slow-wave contingent-negativity variation (CNV) (Brunia et al., 2011;
Walter et al. 1964). Crucially, recent studies suggest that these antici-
patory EEG patterns seem to trace different types of information. For
instance, while alpha-band and beta-band suppression are thought to be
relevant to motivation-related information, the slow-wave CNV links
more closely to instruction-specific information (Grent-‘t-Jong & Wol-
dorff, 2007; van den Berg et al., 2016). Thus, the frequency of EEG may
also inform us about different anticipatory processes that are associated
with the processing of EU and UD.

To this end, this study employed model-based single-trial analyses on
EEG activity elicited during decision-making under risk that involved
potential gains and losses. Specifically, we fit participants' choices to
computational models inspired by Expected-Utility and Prospect theories
(Tversky and Kahneman, 1992; Von Neumann and Morgenstern, 1944)
using hierarchical-Bayesian parameter estimation (Gelman, 2013;
Kruschke, 2014). This method allowed us to compute trial-by-trial vari-
ability in EU and UD, and to have both EU and UD as simultaneous re-
gressors in the same model that predicted trial-by-trial EEG activity.
Having EU and UD in the same model enabled us to examine unique
influences of EU and UD on EEG during decision making under risk. To
control for collinearity of EU and UD, we designed the task and
computational models such that EU (the relative difference in utility be-
tween the two choices) and UD (the absolute difference in utility between
the choices) are orthogonal to each other.

We expected several EEG patterns with distinct characteristics in
topography, time and frequency to be associated with EU and UD. First,
consistent with their roles in stimulus evaluation and attentional
resource allocation (Kissler et al., 2009; Polich, 2007; Schupp et al.,
2006), the P3 and delta-band power are usually enhanced by motiva-
tional, reward-related anticipatory cues (Goldstein et al., 2006; Porn-
pattananangkul and Nusslock, 2015, 2016) and modulated by valence of
emotional pictures (Cano et al., 2009). Moreover, when engaging in
perceptual decision-making, people usually have a stronger P3 for stimuli
that are easier to perceive, and therefore, can be judged with ease
(O'Connell et al., 2012). Thus, we expected both motivation-related,
valence-specific EU and conflict-related, valence-non-specific UD to in-
fluence the P3 and delta-band power. More specifically, we expected
both higher EU (higher motivation to gamble) and higher UD (higher
ease of making decisions) to be associated with higher P3 and delta-band
power. The timing at which EU and UD modulated the P3 and delta-band
power would reveal whether the brain allocates attentional resources to
EU and UD at a similar speed. Next, studies show alpha-band (Hughes
et al., 2013; Pornpattananangkul and Nusslock, 2016) and beta-band
(Do~namayor et al., 2012; Meyniel and Pessiglione, 2013) suppression
when people anticipate seeing and/or prepare actions for reward-related
stimuli. Thus, we expected motivation-related EU, but not
conflict-related UD, to enhance alpha and beta suppression prior to
responding whether to gamble. This pattern would reveal distinct roles of
EU and UD on anticipation-related processes during decision-making
under risk as indexed by EEG at different frequency.

2. Material and methods

2.1. Participants

Fifty-six right-handed (<18, Chapman Handedness Scale; Chapman
and Chapman (1987) native English-speaking undergraduates received
partial course credit for their participation. Participants also earned an
additional monetary bonus based on the outcome of the tasks (see
below). Before submitting participants' behavioral data to the hierar-
chical Bayesian analysis, we discarded data from eight participants due to
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poor model-fit indexes (see below). We then discarded data from three
additional participants due to excessive EEG artifact. This left 45 par-
ticipants (24 females; age M¼ 18.70 years, SD¼ 0.88) in the final EEG
analysis. Participants had no neurological history of head injury andwere
not taking psychotropic medications. All participants gave informed
consent before the study. The study was approved by the IRB at North-
western University and was conducted in accordance with the Declara-
tion of Helsinki.
2.2. Experimental design

The primary task for this study was a modified Mixed-Gamble Loss-
Aversion task. Before starting this task, however, participants completed
a separate guessing task (Dunning and Hajcak, 2007). We used this
guessing task to provide every participant with an identical financial
fund for the following Mixed-Gamble Loss-Aversion task and to provide
participants with a sense of ownership over their initial fund. In this
guessing task, participants had to select between two different choices
during each of the 120 trials in this guessing task, and for each trial they
could either win 80¢, lose 40¢ or not gain/lose any amount. Unbe-
knownst to them, we fixed the total accumulative earning at $12 for
every participant. However, we fully randomized the order of the
outcome across participants.

We modified the Mixed-Gamble Loss-Aversion task used earlier in
fMRI and patient studies (Brown et al., 2013; De Martino, Camerer and
Adolphs, 2010; Tom et al., 2007) (see Fig. 1). In each trial, participants
had to decide whether to accept or reject a gamble. If participants
accepted the gamble, they would have a 50% chance to gain a specified
amount (ranging from $1.5 to $9 in $.50 increment) and a 50% chance to
lose a specified amount (ranging from $.75 to $4.5 in $.25 increment). If
participants decided to reject the gamble, then they would not gain or
lose any amount in this trial. In total, there were 256 trials, covering all of
the unique combinations of gain (16 possibilities) and loss (16 possibil-
ities) amounts. Following previous research (Tom et al., 2007), we did
not show the outcome of each gamble. This is because descriptive-based
decision-making may be altered by the presentation of the outcomes
(Hertwig et al., 2004), and an outcome of the preceding trial may in-
fluence the delta-band power locked to the decision stimulus in the
current trial (Opitz et al., 2015). Accordingly, we were able to focus on
decision-making processes that were not confounded by
outcome-induced processes. We told participants to treat every decision
as equally important since we would randomly pick one trial at the end of
the experiment for which they will receive reimbursement.
Fig. 1. Schematic representation of the Mixed-Gamble Loss-Aversion task. [Gain] repre
Likewise, [Loss] represents one of the possible 16 loss amounts, from $.75 to $4.5 in $
1 s if participants pressed earlier than 1 s. If they pressed later than 1 s, these screens w
1 s. ITI¼ inter-trial interval; ISI¼ inter-stimulus interval.
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Each trial in the Mixed-Gamble Loss-Aversion task began with a 1-s
inter-trial interval, during which a fixation cross appeared. Then, par-
ticipants saw the Gain screen where we presented a potential gain
amount in green at the center of the screen. We asked participants to
press a middle key on a button box whenever they thought they could
memorize the gain amount for that trial. Next, another fixation cross
appeared for 2 s, followed by the Loss screen where we presented a po-
tential loss amount in red. Same as before, participants had to press the
middle key to proceed to the next screen when they thought they could
memorize the loss amount for that trial. Subsequently, another fixation
cross appeared for 2 s. Then, participants saw a Response screen. Here,
participants had to press either a left or right key to indicate whether they
accepted or rejected the gamble, respectively. The Gain, Loss and
Response screens were terminated with a button-press if participants
pressed the key after 1 s. If they pressed the key earlier than 1 s, the
screen would be shown for 1 s. We asked participants to press with their
right index finger, regardless of the key, throughout the task.

Unlike previous fMRI and behavioral studies (Brown et al., 2013; De
Martino et al., 2010; Tom et al., 2007) that showed the gain and loss
amounts and asked for a response all on one screen, we separately
showed Gain, Loss and Response screens. This allowed us to isolate motor
movement from the perception of choices as well as to have a better
control of EEG artifact (e.g., eye-movements). We used the onset of the
Loss screen as the time-locking event for EEG analyses because this
screen was when participants had all of the necessary information for
making a decision. Furthermore, our computational models (see below)
required information that were available only after participants saw both
the Gain and Loss screens. Participants would not have enough infor-
mation to compute either EU (reflecting the relative difference in utility
see equation #6) or UD (reflecting the absolute difference in utility see
equation #16) after seeing the Gain screen alone. Thus, time-locking our
analyses to the Loss screen onset allowed us to test the speed at which the
brain processed EU and UD information using the same locking event
(i.e., the Loss screen).
2.3. Computational modeling of choice data

We implemented similar participant exclusion procedures used pre-
viously (Brown et al., 2013) in the Mixed-Gamble Loss-Aversion task to
ensure that every participant took both gain and loss information into
consideration when deciding whether to gamble. First, for each partici-
pant, we fit his/her trial-by-trial choices to a logistic regression with the
potential gain and loss on that trial as regressors, using a ‘nlmefit’
sents one of the possible 16 gain amounts, from $1.5 to $9 in $.50 increment.
.25 increment. “RT (>1s)” represents the fact that these screens were shown for
ould be terminated with a button-press. Thus, these screens presented for at least
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command in Matlab. We then excluded participants whose regression
coefficient for either the potential gain or loss did not significantly differ
from zero. We also excluded participants whose model fit index (Cox-S-
nell R2) (Cox and Snell, 1989) was exceptionally low (<0.1). This
resulted in us excluding eight out of 56 participants, which is consistent
with previous research (Brown et al., 2013; Sokol-Hessner et al., 2013).

We next employed the hierarchical Bayesian analysis (HBA) approach
(Gelman, 2013; Kruschke, 2014) to fit trial-by-trial choices of all par-
ticipants to two models inspired by Expected Utility and Prospect the-
ories (Tversky and Kahneman, 1992; Von Neumann and Morgenstern,
1944). The first “linear-value” model assumes a linear value function
(Brown et al., 2013; De Martino et al., 2010; Tom et al., 2007):

uðxÞ ¼
� jxj if x � 0

�λ*jxj if x < 0
(1)

“u” is the utility of the potential monetary outcome. “x” is the
objective value (i.e., the amount shown on the screen) of the potential
outcome. “λ” (lambda) is a relative multiplicative weighting of loss to
gain amounts. As a participant-specific free parameter, the lambda value
indicates individual differences in loss aversion: 1¼ loss/gain-neutral,
<1¼ loss-averse, >1¼ gain-seeking. The second “curvilinear-value”
model assumes a curvilinear value function (Sokol-Hessner et al., 2013;
Sokol-Hessner et al., 2009; Sokol-Hessner et al., 2016):

uðxÞ ¼
� jxjρ if x � 0

�λ*jxjρ if x < 0
(2)

That is, the “curvilinear-value” model adds another participant-
specific “ρ” (rho) parameter to the “linear-value” model. Rho captures
the curvature of the utility function across gain and loss amounts, and its
value reflects individual differences in risk attitude: 1¼ risk-neutral,
<1¼ risk-averse for gains and risk-seeking for losses, >1¼ risk-seeking
for gains and risk-averse for losses.

For both models, to calculate the expected utility for each choice,1 we
additionally assumed that our participants linearly combined utilities
and probabilities (Mosteller and Nogee, 1951):

euc ¼
X
i

pi*uðxiÞ (3)

“euc” is the expected utility of each choice. “c” is a member of the set
of choices. “pi” is the probability of obtaining an outcome “xi”. In our
experiment, the choice options included 1) accepting and 2) rejecting the
gamble:

euaccepting ¼ pgain*u
�
xgain

�þ ploss*uðxlossÞ (4)

eurejecting ¼ psure*uðxsureÞ ¼ 1*0 ¼ 0 (5)

We then calculated the overall expected utility for a particular trial as:

EU ¼ euaccepting � eurejecting ¼ pgain*u
�
xgain

�þ ploss*uðxlossÞ � 0

¼ :5*u
�
xgain

�þ :5*uðxlossÞ (6)

A more positive EU value indicates a higher expected utility to accept,
than to reject, the gamble for that trial. To assess how individuals
transformed EU into actual choices, we then entered EU calculated by
both models to a softmax (logit) function (Luce, 1959). This function
predicts a probability (P) of accepting the gamble based on EU:

PðacceptingÞ ¼ �
1þ e�τ*EU��1

(7)
1 We use the word expected utility here to refer to predicted subjective
desirability of each choice, as first conceptualized by the Expected Utility theory
and later modified by Prospect theory to accommodate loss-aversion (Tversky
and Kahneman, 1992; Von Neumann and Morgenstern, 1944). It is also often
referred to as psychological value and subjective value.
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The softmax function has another participant-specific free-parameter,
the inverse temperature “τ” (tao), that reflects individual differences in
behavioral consistency. Higher values represent greater consistency
across trials.

To estimate free parameters, we followed the HBA framework used
in the hBayesDM R package (Ahn et al., 2017) and previous
Loss-Aversion research (Sokol-Hessner et al., 2016). HBA allows esti-
mations of full posterior distributions of parameter values and also
enables the whole group tendencies to inform each participant's
parameter values. Several studies have shown that HBA produces a
more accurate parameter recovery than a conventional,
non-hierarchical Maximum Likelihood Estimation (MLE) method (Ahn
et al., 2011; Katahira, 2016; Lee, 2011). To implement HBA, we used
the Hamiltonian Monte Carlo (HMC) algorithm to run Markov chain
Monte Carlo (MCMC) sampling in Stan 2.16 (Carpenter et al., 2017) via
R 3.3.3 (R Core Team, 2017). Specifically, each participant's parameters
were assumed to be drawn from group-level distributions. We employed
standard normal and half-Cauchy prior distributions for group-level
means (μ) and standard deviations (σ), respectively (Gelman, 2006).
Following previous recommendation (Ahn et al., 2017), we bounded
the lambda (λ) and rho (ρ) parameters between 0 and 5 and between
0 and 2, respectively using an inverse-Probit transformation. Addi-
tionally, we bounded the tao (τ) parameter to be a positive value, using
an exponential transformation:

μλ' ; μρ' μτ' � Normal ð0; 1Þ (8)

σλ' ; σρ' ; στ' � half � Cauchy ð0; 5Þ (9)

λ' � Normal ðμλ' ; σλ' Þ (10)

λ ¼ Probit�1ðλ'Þ*5 (11)

ρ' � Normal
�
μρ' ; σρ'

�
(12)

ρ ¼ Probit�1ðρÞ*2 (13)

τ' � Normal ðμτ' ; στ' Þ (14)

τ ¼ Exp
�
τ'
�

(15)

We used four MCMC chains. For each chain, we randomized its initial
value and drew 3000 samples including 1000 burn-in samples. This left a
total of 8000 samples across chains. To evaluate the convergence of the
MCMC chains, we visually evaluated the trace plots of the group-level
(hyper) parameters, as well as checked the R^ statistic computed from
the Gelman-Rubin test (Gelman and Rubin, 1992). To examine whether
the linear-value or curvilinear-value model explained the choices better,
we computed the Leave-One-Out Information Criterion (LOOIC) (Vehtari
et al., 2017). Lower values of LOOIC indicates a better fit of the model to
the data.

For our main analyses, we focused on the trial-by-trial changes in EEG
activity as a function of the overall EU computed using parameters from
the better-fit model between the linear-value and curvilinear-value
models. As shown earlier, higher EU reflects a higher propensity to
accept, than to reject, the gamble in that trial (see equation #6). Because
1) rejecting the gamble in our experiment always means not gaining or
losing any amount and 2) the probability of obtaining the potential gain
and loss amount is the same, EU becomes the relative difference in the
utility between gain and loss amounts in the gambling option. Accord-
ingly, a higher EU reflects a higher utility to the gain, compared to the
loss, amount in the gambling option.

In addition to computing EU as a trial-by-trial parameter related to
motivational processes (i.e., propensity to accept the gamble), we also
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computed utility distance (UD) as a trial-by-trial parameter related to
conflict processes. We defined UD as the absolute (unsigned) difference
in the utility between accepting and rejecting the gamble. UD reflects the
ease of making a decision and does not predict whether people would
accept or reject the gamble. Lower UD values mean that the utility be-
tween the two options are close to each other, making the decision more
difficult (i.e., high choice conflict). Higher UD values mean that the
utility between the two options are far from each other, making it easier
to either accept or reject the gamble (i.e., low choice conflict). Note that
the distribution of EU across trials for each participant may not be
centered at 0. This depends on how loss-aversive the participants were:
higher loss-aversive participants had a more negative EU than lower loss-
aversive participants. This may bias UD. To correct for this bias, we
applied participant-mean centering to UD:
UDðtrial;participantÞ ¼
���EUðtrial;participantÞ � EUð;participantÞ

���
¼

���euacceptingðtrial;participantÞ � eurejectingðtrial;participantÞ � EUð;participantÞ
���

¼
���pgain*u�xgain�trial;participant � ploss*uðxlossÞtrial;participant � 0� EUðacceptingÞ:;participant

���
¼

���:5* u
�
xgain

�
trial;participant � :5*uðxlossÞtrial;participant � EUðacceptingÞ:;participant

���

(16)
Based on these definitions of EU (the relative difference in utility
between the two choices) and UD (the absolute difference in utility be-
tween the choices), EU and UD were orthogonal to each other by design.
This allowed us to avoid a collinearity problem when having EU and UD
as simultaneous regressors in our regression models that seek to explain
trial-by-trial variability in EEG activity (see below).

It is important to compare our approach of computing subjective, trial-
by-trial parameters (i.e., EU and UD) using participant-specific free-pa-
rameters (i.e., λ, ρ and τ) that reflect individual differences in the choice
pattern to an approach of deriving objective, trial-by-trial parameters
without using participant-specific free-parameters. The objective, trial-by-
trial parameter that is similar to EU is Pascal and Fermat's expected value
(EV) (Bernoulli, 1954; Trepel et al., 2005; Von Neumann and Morgen-
stern, 1944):

evc ¼
X
i

pi*xi (17)

“evc” is the expected value of each choice. “c” is a member of the set of
choices. “pi”is the probability of obtaining an outcome “xi”. That is,
compared to euc (see equation #3), the potential outcome “xi” in evc is not
transformed into utility but multiplies directly to the probability of
obtaining the outcome. For our experiment, the overall expected value
(EV) for a particular trial can be calculated as:

EV ¼ evaccepting � evrejecting ¼ pgain*xgain þ ploss*xloss � 0

¼ :5*xgain þ :5*xloss (18)

Thus, a higher EV value indicates that accepting the gamble is a
2 We realize that EU and EV are not the only parameters used in the decision
under risk literature to capture a propensity to accept the gamble. For instance,
the risk as variance theory posits that in making decisions under risk, people
compare the relative variance within each option (Gillan et al., 2014; Sharpe,
1964; Weber et al., 2004). In the Supplementary section, we discuss how risk as
variance in our experiment is related to choice data, other trial-by-trial pa-
rameters, and EEG activity.
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choice with a better objective value in the long run. Accordingly, EV
should capture a propensity to accept the gamble, similar to EU. Yet,
unlike EU, EV does not take individual differences in loss aversion (λ) and
risk attitude (ρ) into account. Rather, EV assumes a) that every individual
should behave the same, b) that they weigh loss and gain amounts
similarly, and c) that they linearly change their propensity to accept the
gamble as a function of the magnitude of the potential outcome.2 Simi-
larly, we can also calculate the objective trial-by-trial parameter that is
similar to UD using EV. We call this value distance (VD).

VDðtrial;participantÞ ¼
���EVðtrial;participantÞ�EVð;participantÞ

���
¼
���:5*xgaintrial;participant �:5*xlosstrial;participant �EVðacceptingÞ:;participant

���
(19)
Accordingly, VD reflects how far apart the objective value is between
the two choices. Thus, VD should also reflect the ease of making a de-
cision. Lower VD values mean that the objective values between the two
options are close to each other, making the decision difficult. Fig. 2 shows
plots of subjective trial-by-trial parameters (i.e., EU and UD), objective
trial-by-trial parameters (i.e., EV and VD) and behavioral measures (i.e.,
choice and decision RT) at each level of potential gain and loss. These
plots can visually show how close the pattern of EU and EV are to the
pattern of choices, as well as how close the pattern of UD and VD are to
the pattern of decision RT.

2.4. Relationship between utility distance and decision reaction time

Here we sought to validate that UD reflects the ease of making a
decision, as conceptualized above using decision reaction time (RT). If
higher UD reflects a greater ease in making a decision, participants
should take less time to respond (i.e., faster RT). First, we transformed RT
to the Response screen (see Fig. 1) using natural logarithm (ln) to sup-
press the influence of extremely slow trials. We then removed trials that
were faster than 1.5 inter-quartile ranges (IQRs) from the first quartile
(4.92 ln(ms) or 137.51ms). We employed these pre-processing steps to
ensure normality of the RT data. Thereafter, we employed a linear mixed-
effects (LME) regression (Barr et al., 2013) using the lme4 package (Bates
et al., 2015) in R 3.5.1 (R Core Team, 2017) to test the effects of EU and
UD on ln(RT) at each trial. Specifically, we entered EU and UD as fixed
effects. For random effects, we entered random intercepts for participants
and by-participant random slopes for both EU and UD, following the
recommendation to include the maximal random effects structure justi-
fied by the design (Barr et al., 2013) with the following syntax formula:

lme4::lmer(ln(RT) ~ EU þ UD þ (1 þ EU þ UDjparticipant), data ¼ data)

To access the statistical significance of each parameter, we computed
95% confidence intervals (CI95%) using the bootstrap percentile method
(1000 iterations) via the confint.merMod command.



Fig. 2. Heatmaps showing averaged objective (Expected Value, Value Distance)
and subjective (Expected Utility, Utility Distance) trial-by-trial parameters and
behavioral measures (percentage of participants accepting the gamble, decision
RT) at each level of potential gain and loss.
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2.5. EEG recording and preprocessing

We collected continuous EEG data with a sampling rate of 500Hz (DC
to 100Hz on-line, Neuroscan SynAmps RT) from inside an electro-
magnetic shielded booth. We used sixty-four Ag/AgCl electrodes placed
according to the extended 10–20 system (Electro-Cap International Inc.)
and recorded HEOG and VEOG with four eye electrodes. We employed a
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left mastoid for an on-line reference and kept the reference impedance
below 5 kΩ and the scalp and eye electrodes below 10 kΩ. We analyzed
EEG data using Matlab 2015b (MathWorks Inc.) with EEGLAB 14.1.0b
(Delorme and Makeig, 2004) and LIMO 2 (Pernet et al., 2011) toolboxes.
We first downsampled the data to 250 Hz, re-referenced to linked mas-
toids and applied high-pass filtering of 0.01 Hz. Note that for all of the
off-line filters, we set the filter order and transition band width according
to the heuristic default-estimation algorithm in the ‘eegfiltnew’ com-
mand (Widmann et al., 2015). We then manually removed large
non-stereotypical artifacts and bad channels from the continuous data.
Subsequently, we corrected for stereotypical artifacts using ICA with the
“binica” command, based on similar procedures recommended earlier
(Bigdely-Shamlo et al., 2015). To identify artifact components, we
employed the IC_MARC classifier (Frølich et al., 2015) and visually
inspected and reject artifact components.
2.6. Statistical analysis of EEG data

We separately epoched EEG data for wide-band event-related po-
tential (ERP) and for frequency-specific event-related spectral perturba-
tion (ERSP). For wide-band ERP, we epoched the data from �200 to
3000ms relative to the Loss-screen onset. To reduce slow-wave artifacts,
we applied a linear detrend algorithm on a wider (�2000 to 5000ms)
window. We also implemented a low-pass filter of 30 Hz and a baseline
correction using �200 to 0ms time-window. We then rejected the pre-
processed epochs that contained EEG activity �75 μV, which left 216.44
epochs on average (SD¼ 28.48) for each participant.

For frequency-specific ERSP, we epoched the data from �2000 to
4678ms. Similar to ERP, we applied a linear detrend algorithm and a
low-pass filter of 31 Hz. We then rejected the epochs that contained EEG
activity �75 μV, which left 221.04 epochs on average (SD¼ 25.33) for
each participant. We then employed band-pass filters and Hilbert trans-
formation to separate EEG power into five frequency bands: delta
(0.01–3 Hz), theta (4–7 Hz), alpha (8–13Hz), low beta (14–20Hz) and
high beta (21–30 Hz). Note that for the delta band, we only applied low-
pass filtering of 3 Hz given that we already applied high-pass filtering of
0.01 Hz on the continuous, preprocessed EEG data. To reduce potential
edge effects, we then shortened the Hilbert-transformed ERSP epochs to
�332 to 3000ms relative to the Loss-screen onset. Subsequently, we
applied the welding baseline method (Ciuparu et al., 2016) to normalize
single-trial EEG power. Specifically, for each frequency band and
participant, we concatenated EEG power in the baseline period (between
�332 and �132ms) across all trials, and computed means (MBfreq,partic-

ipant) and standard deviations (SDBfreq,participant) of this concatenated
baseline. We then normalized EEG power at each time point in a
particular trial for each frequency band and participant (Xtime-point,trial,freq,

participant) using a pseudo z-scoring procedure, giving rise to normalized
values in a z-score unit (Z(X time-point,trial,freq,participant)):

Z
�
Xtime-point;trial;freq;participant

� ¼ Xtime-point;trial;freq;participant � MBfreq;participant

SDBfreq;participant

(20)

Recent research shows that this method provides a better control for
biases compared to other single-trial normalization procedures (Ciuparu
et al., 2016).

To examine the extent to which EU and UD were uniquely related to
single-trial EEG activity, we employed mass-univariate, hierarchical,
generalized linear-models (GLMs) as implemented in the LIMO 2 toolbox
(Pernet et al., 2011). For the first-level (i.e., trial-level) analysis, we
simultaneously entered trial-by-trial EU and UD as predictors for each
participant's single-trial EEG activity on each electrode and time-point,
separately for wide-band ERP and each frequency-specific ERSP. Thus,
the parameter values of EU and UD represent the unique variance of EEG
activity accounted for by each predictor. For the second-level (i.e.,
subject-level) analysis, we used 1000 bootstrapping iterations to conduct



Table 1
The effects of Expected Utility (EU) and Utility Distance (UD) on decision reac-
tion time (ln(RT)) based on linear mixed-effects regression.

Fixed Effects

Predictors ln(RT) in ln(ms)

Estimates CI95%

(Intercept) 6.17 (6.10, 6.23)
EU 0.00 (�0.01, 0.01)
UD �0.08 (�0.10, �0.05)

Random Effects
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statistical tests on beta coefficients of EU and UD computed from each
participant's data (Wilcox, 2016). Specifically, we employed boot-
strapped one-sample t-tests to examine if the effect of EU and UD on EEG
activity at each time point and electrode was consistent across partici-
pants (Pernet et al., 2011). To control for multiple comparisons of tests
done across time points and electrodes, we used the spatial-temporal
clustering approach (Maris and Oostenveld, 2007) and set the
family-wise error (FWE) rate at α¼ 0.05. Research shows that using
bootstrapping as a robust, non-parametric approach with iterations
higher than 800 along with the spatial-temporal clustering correction can
sufficiently control for FWE at 0.05 level (Pernet et al., 2015).

To visualize how EU and UD modulated EEG and ERSP waveforms,
we also conducted bin-like analyses. First, we separated 256 trials into
eight bins based either on EU or UD values, and selected the bins that had
highest and lowest values of EU and UD.3 Subsequently, we conducted a
permutation test with 1000 randomizations and α¼ 0.05 at each time
point (Delorme and Makeig, 2004) to find the differences in EEG activity
between bins of high and low values of EU and UD. We used the
false-discovery rate (FDR) (Benjamini and Hochberg, 1995) to control for
multiple comparisons. We then plotted significant time points along with
the mean and standard error of EEG activity from each bins using
“std_plotcurve” command (Delorme and Makeig, 2004).

To help further visualize the effect of EU on single-trial EEG, we
investigated the association between a gambling choice and EEG activity.
Here we separated trials into those in which participants accepted the
gamble (Accepting) and those in which they rejected the gamble
(Rejecting). We then applied the same permutation analysis with the bin-
like analysis above. Given our conceptualization of EU as reflecting
motivation-related processes, the differences in EEG activity between
Accepting and Rejecting trials should bear resemblance to the effect of
EU. Accordingly, we focused this analysis only on frequency bands that
showed the effect of EU (but see Supplementary Fig. 3 for the analyses at
other indices).

Similarly, to help visualize the effect of UD on single-trial EEG, we
investigated the association between decision RT to the Response screen
and EEG activity. First, we used natural log to transform RT, resulting in
ln(RT), and excluded the trials where participants responded faster than
1.5 IQRs from the first quartile, same as above. Given that ln(RT) is a
continuous variable, we employed the same mass-univariate, hierarchi-
cal GLM approach as our main single-trial analysis (Pernet et al., 2011),
except that we entered ln(RT) (as opposed to EU and UD) as a predictor in
the first-level analysis. A higher ln(RT) value (i.e., slower response)
should reflect an uneasiness in making a decision, in a manner that is
similar to lower UD (i.e., higher choice conflict). Thus, we expected to see
the association between ln(RT) and EEG activity to be at a similar
time-point, frequency and topography as the effect for UD, but in the
opposite direction. Accordingly, we focused our analysis of ln(RT) only
on frequency bands that showed the effect of UD.

3. Results

3.1. Computational modeling of choice data

On average, each participant decided to gamble on 40.19% of all
trials (SD¼ 21.62). LOOIC of the curvilinear-value model (6349.31) was
lower than that of the linear-value (6390.35) model, suggesting that the
3 We only selected bins at the extreme ends to avoid confounding EU with UD.
That is, given our definition of UD as the absolute difference between the ex-
pected utility of each choice, trials with middle EU values had lower UD values
than trials at the extreme ends. In other words, by comparing bins with the
highest and lowest EU, we kept UD constant and only investigated the differ-
ences due to EU. Note that in the hierarchical GLM analyses, we avoided this
confound by having both EU and UD as predictors in the same regression model,
and thus the effect of EU controlled for UD and vice versa.
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curvilinear-value model provided a better fit it to the choice data. Thus,
we used parameters from the curvilinear-value model for analyses. The
trace plots in our data confirmed excellent mixing of MCMC samples for
the parameters from the curvilinear-value model. Moreover, the range of
R^values from all parameters were from 1 to 1.01, suggesting that our
MCMC chains converged well. The group-level parameters were esti-
mated as follows: loss-aversion lambda (λ) mean recovered¼ 2.33,
SD¼ 0.19; risk-attitude rho (ρ) mean recovered¼ 0.85, SD¼ 0.06;
inverse-temperature tau (τ) mean recovered¼ 2.95, SD¼ 0.48.

Fig. 2 presents a heatmap of the percentage of participants accepting
the gamble at each level of potential gain and loss. Participants were
more likely to accept the gamble when the potential gain was high and
the potential loss was low. Fig. 2 also presents heatmaps of Expected
Value (EV) and Expected Utility (EU). Unlike EV, the middle values of EU
were at the diagonal of the heatmap, similar to that of the percentage of
participants accepting the gamble. This suggests that having participant-
specific free-parameters (i.e., λ, ρ and τ) in the models to compute a
subjective trial-by-trial parameter (EU) allowed us to trace propensity to
accept the gamble more closely than using an objective trial-by-trial
parameter (EV).
3.2. Relationship between utility distance and decision reaction time

The average decision RT was 585ms (SD¼ 165). Fig. 2 presents the
heatmap of decision RT at each level of potential gain and loss. Partici-
pants were faster both a) when the potential gain was high and the po-
tential loss was low and b) when the potential gain was low and the
potential loss was high. Fig. 2 also shows the heatmaps of Value Distance
(VD) and Utility Distance (UD). Unlike VD, the lowest values of UD were
at the diagonal of the heatmap, where participants were also slowest.
This pattern is consistent with the idea that low values of UD reflect an
uneasiness in making a decision (high choice conflict). Accordingly,
similar to the conclusion drawn from the EU heatmap, the UD heatmap
suggests that having participant-specific free-parameters (i.e., λ, ρ and τ)
in the models allowed us to better trace the ease of making a decision
using a subjective trial-by-trial-parameter UD.

Table 1 and Fig. 3 show the effects of EU and UD on ln(RT) based on
the LME regression. The fixed effects show that ln(RT) had a statistically
significant (i.e., CI95% did not include zero) negative relationship with
UD, but not EU. Higher UD was associated with lower (faster) ln(RT).
This suggests that participants were faster in making a decision when the
utility between the two options were far away from each other, which
confirms our conceptualization of using UD to reflect ease in making a
Residual (σ2) 0.37 (SD¼ 0.61)
Within-participant variance (τ00) 0.05 (SD¼ 0.22)
Between-participant variance (τ11) participant.EU 0.0009 (SD¼ 0.0293)
Between-participant variance (τ11) participant.UD 0.0048 (SD¼ 0.0694)
Random-slope-intercept correlation
(σ01) participant.EU

�0.08 (CI95%¼ (�0.56,
0.37))

Random-slope-intercept correlation
(σ01) participant.UD

�0.35 (CI95%¼ (�0.64,
0.06))

Intra-class correlation coefficient participant 0.11

Observations 11367
Marginal R2/Conditional R2 0.009/0.118



Fig. 3. The effects of Expected Utility (EU) and Utility Distance (UD) on decision reaction time (ln(RT)) based on linear mixed-effects regression. The shaded areas indicate
95% confidence intervals.
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decision. The random effects show that the correlations between the
slope and intercept were not significant for both EU and UD. Note that,
despite being statistically non-significant, these correlations were kept in
the model because assuming the correlations between the slope and
intercept fit the data significantly better than assuming no correlations
(χ2(3)¼ 9.32, p¼ .025).

3.3. EEG results

Fig. 4 shows ERP and ERSP time-frequency plots and their topogra-
phies at different time windows collapsing across all levels of EU and UD.
These plots display overall changes in ERP amplitude following the
stimulus onset: 1) enhancement in central-parietal positive activity at
around 250–750ms followed by 2) enhancement in sustained-frontal
negative activity starting around 1250ms. They also show overall
changes in ERSP power following the stimulus onset: 1) enhancement in
central-parietal delta-band (0.01–3 Hz) power at around 500ms, 2)
enhancement in frontal-midline theta-band (4–7 Hz) power at around
250ms, 3) suppression in alpha-band (8–13 Hz) power starting at oc-
cipital sites around 250ms and later at motor areas, and 4) suppression in
low (14–20 Hz) and high (21–30Hz) beta-band power mainly at motor
areas starting around 250ms. Figs. 4–8 further demonstrate the extent to
which EU and UD captured the changes in wide-band single-trial ERP
amplitude and specific-band, single-trial ERSP power.

Fig. 5 shows the effect of EU (Fig. 5a and b) and UD (Fig. 5c and d) on
wide-band single-trial ERP. Higher EU was associated with a more pos-
itive ERP activity in the central-parietal area at around 350–550ms.
Similar to EU, higher UD was associated with more positive ERP activity
in the central-parietal area, but at a later time window at around
500–700ms. More specifically, these effects of EU and UD on positive
ERP activities occurred at the time window and topography of the P3
component (Polich, 2007). In addition to this positive ERP activity,
higher UD was also related to sustained, negative ERP activity at around
1200–3000ms. Within this 1200–3000ms window, the effect of UD on
negative ERP activity was propagated from frontal sites to areas
throughout the scalp. The bin-like analyses (Fig. 5b and d) confirm the
patterns observed using the hierarchical GLMs approach (Fig. 5a and c).
We also found more positive wide-band ERP activity in Accepting trials,
compared to Rejecting trials, around 200–1000ms at PZ (Fig. 5b).

Fig. 6 shows that both EU (Fig. 6a) and UD (Fig. 6b) were related to
changes in delta-band power. These relationships bare a similar pattern
with the relationships EU and UD had with the positive wide-band ERP
(i.e., the P3-like component) in terms of both time windows and elec-
trode locations. Specifically, higher EU was related to stronger delta-
band power and more positive wide-band ERP activity, both in the
central-parietal area at around 400ms. Similarly, higher UD was asso-
ciated with stronger delta-band power and more positive wide-band ERP
490
activity, both in the central-parietal area at around 600ms. The bin-like
analyses (Fig. 6c) confirm the patterns using the hierarchical GLMs
approach (Fig. 6a and b). We also found stronger delta-band power in
Accepting trials, compared to Rejecting trials, around 200–700ms at PZ
(Fig. 6c).

Unlike delta-band power, the relationship between EU and theta-
band power at the early time window was not statistically significant
(Fig. 7 a,b). This is despite the overall enhancement in frontal-midline
theta-band power across all trials around 250ms following stimulus
onset (Figs. 4 and 7b). Rather, from the hierarchical GLMs approach
(Fig. 7a), there was a significant relationship between higher EU and
suppression of theta-band power at around 2500–2750ms. However,
bin-like analyses (Fig. 7b) did not confirm the relationship at this window
(Fig. 7b); thus we limited the interpretation of this relationship. There
was no statistically significant relationship between UD and theta-band
power.

As for alpha-band power, higher EU was associated with sustained
alpha suppression at around 1000–3000ms (Fig. 8a). The effect was
more widespread at the posterior sites around 1000–2000ms then at the
frontal sites afterward. Moreover, we found stronger alpha suppression in
Accepting trials, compared to Rejecting trials, at the similar time window
(Fig. 8b). Conversely, there was a small window around 600–800ms
where higher UD was significantly associated with alpha suppression
(Fig. 8b). The bin-like analyses (Fig. 8b,d) confirm the patterns using the
hierarchical GLMs approach for EU (Fig. 8a), but not for UD (Fig. 8c).
Accordingly, the effects of EU (but not UD) appear to be robust across the
two methods of analyses.

In addition to alpha-band power, higher EU was associated with
sustained low-beta suppression at around 800–2000ms at the frontal
area (Fig. 9a). Similarly, we also found stronger low-beta suppression in
Accepting trials, compared to Rejecting trials, at the similar time window
with the effect of EU (Fig. 9b). There was no statistically significant
relationship between UD and low-beta-band power. The bin-like analyses
(Fig. 9b) confirm the patterns using the hierarchical GLMs approach
(Fig. 9a). Both EU and UD did not significantly explain the changes in
high-beta-band power (see Supplementary).

Fig. 10 shows the association between ln(RT) and EEG activity. Here,
we only focused on the wide-band ERP and delta power that showed the
widespread effects of UD. This is because of our conceptualization of
slower ln(RT) as reflecting the uneasiness in making a decision, in a
similar manner to lower UD (i.e., higher choice conflict). We found sta-
tistically significant associations between ln(RT) and both wide-band
ERP (Fig. 10a) and delta power (Fig. 10b) at similar time-points and
topography as the effect of UD (but in the opposite direction). Slower
ln(RT) was associated with more negative wide-band ERP activity and
reduction of delta-power at 500–700ms in the posterior sites. This time
window of the wide-band ERP activity is similar to the effect of UD on the



Fig. 4. ERP (Fig. 4a) and ERSP Time-Frequency (Fig. 4b) plots and their topographical maps (Fig. 4c), collapsed across trials (i.e., all levels of Expected Utility and Utility
Distance). The shaded areas in Fig. 4a indicate across-participant 95% confidence intervals of the ERP waveform. To visually inspect ERSP at different frequencies,
collapsed across all levels of EU and UD, we created time-frequency plots (Fig. 4b) using a modified complex sinusoidal wavelet that increased from 3 cycles at 1 Hz to
10 cycles at 30 Hz. We used a linear space for both frequency (at every 1 Hz) and time points (2 ms). We removed half of the sliding window of the lowest frequency at
the edges (i.e., the beginning and the end) of each epoch to reduce the potential edge effects, leaving an epoch between �332 and 3000ms after edge removal. We
then divided EEG power by the average power during the baseline period (between �332 and �132ms) across trials at each frequency. The topographical maps
(Fig. 4c) were based on Hilbert transformed data that was also used for statistical analyses.
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Fig. 5. Wide-band single-trial ERP as a function of Expected Utility (EU), Utility Distance (UD) and Accepting and Rejecting trials. Fig. 5a,c: The effect of EU (Fig. 5a) and UD
(Fig. 5c). The left plots show parameter values at each electrode (Y axis) and time point (X axis). The order of the electrodes is arranged based on their location in two
steps. First, eight groups of electrodes are created based on the anterior-posterior dimension, so that anterior and posterior electrodes are at the top and bottom of the Y
axis, respectively. Each group of electrodes is separated from each other by dotted lines. Second, within each group, the electrodes are further arranged based on the
left-right dimension, so that left, midline and right electrodes are at the top, middle and bottom of the Y axis, respectively. Only the names of the midline electrodes are
shown here, and only parameter values that passed spatial-temporal clustering (α¼ .05) are plotted. The middle plots show parameter values at a specific electrode.
The shaded areas indicate bootstrap 95% confidence interval. The red line at the bottom indicates significant time points that passed spatial-temporal clustering
(α¼ 0.05). The right plots show topographical maps of uncorrected parameter values at a specific time window. Fig. 5b,d: Wide-band averaged ERP waveforms,
comparing between bins with high and low EU (Fig. 5b), between Accepting and Rejecting trials (Fig. 5b) and between bins with high and low UD (Fig. 5d). The shaded areas
indicate between-condition standard error. The red line at the bottom indicates significant time points that passed FDR correction (q¼ 0.05). The blue line at the
bottom indicates significant time points that had a permutation p-value< .05, but did not pass FDR correction. See Supplementary Fig. 3 for the analyses at other
midline electrodes.

Fig. 6. Delta-band (0.01 – 3 Hz) ERSP as a function of Expected Utility (EU), Utility Distance (UD) and Accepting and Rejecting trials. Fig. 6a and b: The effect of EU (Fig. 6a)
and UD (Fig. 6b). The left plots show parameter values at each electrode and time point. Here, we only plotted parameter values that passed spatial-temporal clustering
(α¼ 0.05). See caption in Fig. 5 for the arrangement of electrodes in these left plots. The middle plots show parameter values at a specific electrode. The shaded areas
indicate bootstrap 95% confidence interval. The red line at the bottom indicates significant time points that passed spatial-temporal clustering (α¼ 0.05). The right
plots show topographical maps of uncorrected parameter values at a specific time window. Fig. 6c: Delta-band averaged ERSP waveforms, comparing between bins with
high and low EU, between Accepting and Rejecting trials, and between bins with high and low UD. The shaded areas indicate between-condition standard error. The red line
at the bottom indicates significant time points that passed FDR correction (q¼ .05). The blue line at the bottom indicates significant time points that had permutation
p-value< .05, but did not pass FDR correction. See Supplementary Fig. 3 for the analyses at other midline electrodes.
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Fig. 7. Theta-band (4 – 7 Hz) ERSP as a function of Expected Utility (EU), Utility Distance (UD) and Accepting vs. Rejecting trials. Fig. 7a: The effect of EU. The left plot
shows parameter values at each electrode and time point. Here, we only plotted parameter values that passed spatial-temporal clustering (α¼ 0.05). See caption in
Fig. 5 for the arrangement of electrodes in the left plot. The middle plot shows parameter values at a specific electrode. The shaded areas indicate bootstrap 95%
confidence interval. The red line at the bottom indicates significant time points that passed spatial-temporal clustering (α¼ 0.05). The right plot shows a topographical
map of uncorrected parameter values at a specific time window. Fig. 7b: Theta-band averaged ERSP waveforms, comparing between bins with high and low EU, between
Accepting and Rejecting trials and between bins with high and low UD. The shaded areas indicate between-condition standard error. The red line at the bottom indicates
significant time points that passed FDR correction (q¼ .05). The blue line at the bottom indicates significant time points that had permutation p-value< .05, but did
not pass FDR correction. See Supplementary Fig. 3 for the analyses at other midline electrodes.
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P3-like component, but it is later than the effect of EU. Moreover, slower
ln(RT) was associated with more frontal sustained positive ERP activity
at similar time windows and topography as the effect of UD. This asso-
ciation with frontal sustained ERP activity, while having a p-value lower
than .05, did not survive multiple comparison correction with spatial-
temporal clustering.

4. Discussion

When making decisions under risk, neoclassical economists argue
that individuals should only gamble when it maximizes their predicted
subjective desirability, reflected by EU (Von Neumann and Morgenstern,
1944). However, EU of risky choices may only reflect the
motivation-related, valence-specific part of the information processed
during decision-making (Bartra et al., 2013). Focusing solely on EU, one
misses the conflict-related, valence-non-specific part of the
decision-making process, which is reflected in utility distance (UD). In
fact, our LME regression analysis shows that UD, but not EU, was related
to how fast our participants made decisions, suggesting that UD is an
integral part of the decision-making processes. In processing choices,
people have to attend to EU and UD relevant information almost
instantaneously. Model-based single-trial EEG analyses allowed us to
simultaneously enter EU and UD as predictors in the hierarchical GLM
analysis, thereby teasing apart the unique influences of EU from UD in
time, frequency and topographical space. This, in turn, enabled us to
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begin to unpack how these two complementary parts of decision making
are processed under risk. Overall, we observed a distinct influence of EU
and UD on several EEG patterns: higher EU was associated with the
enhancement of P3-like activity, delta-band power, alpha suppression
and beta suppression, while higher UD was associated with the
enhancement of P3-like activity, delta-band power and sustained-frontal
negativity. Moreover, we found that the differences in EEG activity be-
tween Accepting vs. Rejecting trials appear to resemble the effect of EU.
Similarly, we also found that the association between decision RT and
EEG resembles the effect of UD. This strengthens our claim that EU and
UD respectively represent the motivation-related (reflected by propensity
to accept the gamble) and conflict-related (reflected by length of time
taken to decide) aspects of decision-making processes.

As predicted, both EU and UD were positively associated with wide-
band single-trial positive ERP activity that resembled the P3 component
in both time (i.e., around 300–600ms) and topography (i.e., at central-
parietal sites) (Polich, 2007). Since EU reflects motivational,
valence-specific information, this positive relationship between EU and
P3 is consistent with an enhanced P3 to (1) motivational, reward-related
anticipatory cues (Broyd et al., 2012; Carrillo-de-la-Pe~na & Cadaveira,
2000; Goldstein et al., 2006; Novak and Foti, 2015; Pornpattananangkul
and Nusslock, 2015; Ramsey and Finn, 1997; Santesso et al., 2012; Zhang
et al., 2017) and (2) positive-valence pictures (Cano et al., 2009; Olofsson
et al., 2008). Since UD reflects the ease in which a decision is made, the
positive relationship between UD and P3 is consistent with perceptual



Fig. 8. Alpha-band (8 – 13 Hz) ERSP as a function of Expected Utility (EU), Utility Distance (UD) and Accepting and Rejecting trials. Fig. 8a,c: The effects of EU (Fig. 8a) and
UD (Fig. 8c). The left plots show parameter values at each electrode and time point. Here, we only plotted parameter values that passed spatial-temporal clustering
(α¼ 0.05). See caption in Fig. 5 for the arrangement of electrodes in these left plots. The middle plots show parameter values at a specific electrode. The shaded areas
indicate bootstrap 95% confidence interval. The red line at the bottom indicates significant time points that passed spatial-temporal clustering (α¼ 0.05). The right
plots show topographical maps of uncorrected parameter values at a specific time window. Fig. 8b,d: Alpha-band averaged ERSP waveforms, comparing between bins with
high and low EU (Fig. 8b), between Accepting and Rejecting trials (Fig. 8b) and between bins with high and low UD (Fig. 8d). The shaded areas indicate between-condition
standard error. The red line at the bottom indicates significant time points that passed FDR correction (q¼ 0.05). The blue line at the bottom indicates significant time
points that had permutation p-value< .05, but did not pass FDR correction. See Supplementary Fig. 3 for the analyses at other midline electrodes.
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Fig. 9. Low-beta-band (14 – 20 Hz) ERSP as a function of Expected Utility (EU), Utility Distance (UD) and Accepting and Rejecting trials. Fig. 9a: The effect of EU. The left
plot shows parameter values at each electrode and time point. Here, we only plotted parameter values that passed spatial-temporal clustering (α¼ 0.05). See caption in
Fig. 5 for the arrangement of electrodes in these left plots. The middle plot shows parameter values at a specific electrode. The shaded areas indicate bootstrap 95%
confidence interval. The red line at the bottom indicates significant time points that passed spatial-temporal clustering (α¼ 0.05). The right plot shows a topographical
map of uncorrected parameter values at a specific time window. Fig. 9b: Beta-band averaged ERSP waveforms, comparing between bins with high and low EU, between
Accepting and Rejecting trials and between bins with high and low UD. The shaded areas indicate between-condition standard error. The red line at the bottom indicates
significant time points that passed FDR correction (q¼ .05). The blue line at the bottom indicates significant time points that had permutation p-value< .05 but did
not pass FDR correction. See Supplementary Fig. 3 for the analyses at other midline electrodes.

N. Pornpattananangkul et al. NeuroImage 188 (2019) 483–501
decision-making research showing a stronger P3 for stimuli that can be
judged more easily (Kelly and O'Connell, 2013; O'Connell et al., 2012;
Twomey, Murphy, Kelly and O'Connell, 2015). Importantly, while both
EU and UDmodulated the P3, we showed that the unique contribution of
motivational, valence-specific EU on the P3 was around 200ms earlier
than that of the conflict-related, valence-non-specific UD. Given the P3's
role in stimulus evaluation and attentional-resource allocation (Kissler
et al., 2009; Polich, 2007; Schupp et al., 2006), this may suggest that,
during decision-making processes, participants evaluated and attended
to the motivational aspect of the choices (e.g., how rewarding of the
potential outcome is) before the conflicted-related part (e.g., how easy to
choose one choice over the other).

EU and UD had similar effects on delta-band power as they had on P3
in both time and topographical space. This similarity suggests that the
influence of EU and UD on wide-band single-trial ERP activity that
constituted P3-like activity was likely driven by EEG in the delta band.
This finding is consistent with research showing that motivational,
reward-related anticipatory cues enhance delta-band power in a similar
manner to the P3 (Pornpattananangkul and Nusslock, 2015, 2016). Note
that while several studies have shown a relationship between P3 ERP and
delta-band ERSP (Cavanagh, 2015; Demiralp et al., 2001; Demiralp et al.,
1999; Harper et al., 2014), this has not always been the case. For
instance, in some situations, alpha-band EEG may also influence the P3
(Intriligator and Polich, 1994; Mazaheri and Jensen, 2008). Because the
effects of EU and UD on EEG activity at other frequency bands in our
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study were not at a similar time window as the P3, delta-band power may
account for activity underlying the P3 in the context of decision-making
under risk.

As hypothesized, higher EU was associated with both alpha-band and
low-beta-band suppression. Unlike UD's effects on P3 and delta-band
power, UD had a weaker effect (i.e., a smaller time window) on alpha-
band power and did not have a statistically significant effect on beta-
band power. Given that EU reflects motivation-related information, the
effect that EU had on alpha-band power is consistent with recent work
showing stronger alpha suppression during reward-anticipation pro-
cesses (Hughes et al., 2013; Pornpattananangkul and Nusslock, 2016; van
den Berg et al., 2014). For instance, in one study (van den Berg et al.,
2014), participants were able to obtain monetary rewards during a
Stroop task on reward trials, but they could not obtain reward regardless
of their performance during no-reward trials. The authors reported that
cues that signified a reward trial elicited stronger alpha suppression at
both frontal and occipital sites, and this change in alpha power predicted
improvement in participants' Stroop performance. Similarly, the effect of
EU on beta suppression is consistent with research showing a role of beta
power in facilitating action initiation toward expected rewards
(Do~namayor et al., 2012; Gable et al., 2016; Meyniel and Pessiglione,
2013). Meyniel and Pessiglione (2013), for instance, employed monetary
incentives to motivate participants to take a shorter break in a
physical-effort task. They showed that stronger beta suppression in motor
areas during the break was associated with higher incentive levels and



Fig. 10. Ln(RT) predicting wide-band single-trial ERP (Fig. 10a) and delta-band (0.01–3 Hz) ERSP (Fig. 10b). The left plot shows parameter values at each electrode and
time point. Here, we plotted both corrected parameter values that passed spatial-temporal clustering (α¼ 0.05) and uncorrected parameter values that had a bootstrap
p-value< .05, but did not passed spatial-temporal clustering. See caption in Fig. 5 for the arrangement of electrodes in these left plots. The middle plot shows
parameter values at a specific electrode. The shaded areas indicate bootstrap 95% confidence interval. The red line at the bottom indicates significant time points that
passed spatial-temporal clustering (α¼ 0.05). The right plot shows a topographical map of uncorrected parameter values at a specific time window.
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predicted decisions to have shorter breaks. Accordingly, EU in our study
may capture reward-anticipation processes implicated in the alpha-band
and low-beta-band suppression.

It is important to highlight the delayed effect of EU on alpha (after
1000ms) and low-beta (after 800ms) suppression in the current study.
These time windows were close to the ISI preceding the Response screen
at which participants had to report their decision whether or not to
gamble using their right index finger. During these windows, alpha and
beta suppression across trials were topographically distributed above the
motor areas (see Fig. 3c). Importantly, this suppression was distributed
more predominantly to the left motor area, which was contralateral to
the upcoming right-hand movement. Thus, higher EU (which by defini-
tion reflects a higher reward value of the gamble and, thus, a higher
tendency to gamble) may facilitate motor preparation to gamble. None-
theless, while motor preparation might be one of the underlying pro-
cesses of EU on alpha and low-beta suppression, there might also be
involvement of other higher-cognition processes related to reward-
anticipation. We make this conjecture because of the topographical dis-
tribution of EU effects. First, the effect of EU on alpha-band power was
quite widespread throughout the scalp, not just motor areas. Second, the
effect of EU on low-beta-band power was distributed more predomi-
nantly at the frontal sites, than at the motor areas. Consistent with this
conjecture is previous work (Pornpattananangkul and Nusslock, 2016;
van den Berg et al., 2014) showing stronger alpha suppression at the
frontal and occipital sites, even during durations that require no motor
movement (e.g., while waiting to see feedback).

We also demonstrated an association between higher UD and a
stronger sustained-frontal negativity. While we did not hypothesize this
pattern, this association was robust, spreading across a large time win-
dow (at around 1200–3000ms) and several electrodes (starting from
frontal sites to areas throughout the scalp). Similar to the effect of EU on
alpha and low-beta suppression, the effect of UD on this sustained-frontal
negativity was during the ISI preceding the Response screen. This
sustained-frontal negativity bears some resemblance to the contingent-
negativity variation (CNV) in terms of timing (i.e., between two stimuli
and prior to a response to the later stimulus) and topography (i.e.,
frontally distributed) (Brunia et al., 2011; Kononowicz and Penney,
2016; Walter et al., 1964). The frontal-dominant and earlier portion of
the CNV is traditionally thought to trace the uncertainty of the upcoming
response, while the central-dominant and later portion of the CNV is
linked to response preparation (J€arvilehto and Fruhstorfer, 1970). When
the upcoming response is more certain (e.g., when having
attention-directing cues to direct the response), the CNV is usually more
negative at the frontal sites (Bayer et al., 2017; Grent-‘t-Jong&Woldorff,
2007; Talsma et al., 2008; van Boxtel and Brunia, 1994; van den Berg
et al., 2016). Moreover, a slower upcoming response was associated with
a less negative CNV (Brunia et al., 2011; Rohrbaugh et al., 1976). This is
consistent with the association between a slower ln(RT) and more frontal
sustained positive (i.e., less negative) ERP activity observed in the pre-
sent study. It is important to note, however, that while both UD and
ln(RT) were related to frontal sustained wide-band ERP activity (re-
flected by bootstrap p< .05), only the effect of UD survived the multiple
comparison correction with spatial-temporal clustering (Maris and Oos-
tenveld, 2007). This may reflect the noisiness of RT data, as compared to
UD (see Fig. 2).

Given that higher UD reflects a greater ease in making an upcoming
motor response (as shown in its association with faster ln(RT) in the LME
regression analysis), our wide-band ERP finding is consistent with recent
research investigating the CNV in the cuing paradigm (Grent-‘t-Jong &
Woldorff, 2007). In this paradigm, the experimenters presented
attention-directing cues to grab participants’ attention to locations where
upcoming stimuli may show up, making it easier to respond to these
stimuli. This led to a more negative CNV, peaking at around 1200ms
following the cue and 800ms preceding the response (Grent-‘t-Jong &
Woldorff, 2007), similar to what we found in the current study. Using this
cuing paradigm, van den Berg et al. (2016) argued that alpha suppression
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and the CNV may reflect different anticipation-related processes: while
alpha suppression is related to motivation, the CNV is more closely
related to instruction-specific attention. Accordingly, in our study, the
fact that the CNV was more negative when UD was high might be due to
the fact that participants were more certain about which upcoming
choice to make. The differential effects of a) motivational-related EU on
alpha-band power and b) choice-certainty-related UD on the CNV sup-
port the different roles of the two EEG indices in anticipation-related
processes.

We found an overall enhancement in theta-band power at the frontal-
central sites across all trials approximately 250ms following stimulus
onset. The characteristics of this activity (in terms of frequency, time and
topography) are similar to those of the frontal-midline theta (FMT)
implicated in conflict monitoring, especially during outcome evaluation
(Cavanagh and Frank, 2014; Cavanagh and Shackman, 2015). FMT, for
instance, was stronger when people obtained an outcome indicating a
loss or incorrect performance or when they made an incorrect response
(Luft, 2014). However, unlike other frequency bands, we did not find
statistically significant effects of either EU or UD on the FMT. Most
reward-processing studies that have investigated FMT focus on the
outcome phase, but not the cue or decision phase (for review, see Glazer
et al., 2018). Two studies failed to show that rewards modulated the
cue-locked FMT (Cavanagh, 2015; Pornpattananangkul and Nusslock,
2016). In fact, we previously showed that while rewards influence both
cue-locked and outcome-locked delta power, rewards only modulate the
outcome-locked FMT, but not cue-locked FMT (Pornpattananangkul and
Nusslock, 2016). Given that the FMT in the current study occurred during
the decision phase and that reward cues should have similar psycho-
logical processes with the motivation-related EU, the lack of an EU effect
on the FMT is consistent with previous (rather limited) research. None-
theless, the absence of the UD effect on the FMT is more perplexing, given
that we conceptualize UD as being related to conflict in making decision.
It is possible that conflict from obtaining a loss or incorrect performance
outcome that usually enhances outcome-locked FMT (Luft, 2014) is
processed differently from conflict during decision-making. For instance,
it has been argued that the mechanism underlying the N2 ERP compo-
nent, which is closely related to the FMT, reflects a template mismatch
(Folstein and Van Petten, 2008). At the outcome phase, a loss or incorrect
performance outcome is inconsistent (i.e., a mismatch) with one's
expectation, thereby creating conflict and enhancing the N2/FMT.
However, during the decision-making phase, this template mismatch
does not occur. Future research that manipulates expectation of the up-
coming decisions is needed to test the possibility of template mismatch as
a mechanism for differential effects on FMT during decision vs. during
outcome.

It is important for us to compare and contrast our results to what has
been reported in previous EEG research using parametric models during
reward-processing and decision-making. This is challenging because a)
most EEG studies investigating reward-processing and decision-making
typically focus on the outcome phase, and ignore the decision phase
(for review, see Glazer et al., 2018) and b) because most EEG studies still
rely on averaging signals into components (for review, see Bridwell et al.,
2018). There is one reinforcement-learning study (Fischer and Ull-
sperger, 2013) that investigated single-trial wide-band ERP (but not
ERSP) locked to cues in which participants needed to decide
whether-or-not to gamble. In this study, participants had to learn the
value of each cue via trial-and-error, and, accordingly, the value of
different cues changed from trial by trial depending on previous out-
comes associated with them. The authors of this study used a reinforce-
ment Q-learning algorithm (Sutton and Barto, 1998) to computationally
model a) Q, or the subjective desirability value associated with each cue
based on trial-and-error learning, and b) subjective decision certainty
(SDC), or the certainty in preferring one option over the other. Concep-
tually Q and SDC are similar to EU and UD in that they are related to
motivation and conflict, respectively, even though the models and tasks
used are derived from different theories (i.e., Reinforcement-Learning
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Theory vs. Expected Utility and Prospect Theory). Fischer and Ullsperger
found Q and SDC were associated with wide-band ERP at similar
time-windows and polarity as our EU and UD effects on the P3-like ac-
tivity. Although their effect of Q appears to propogate more to frontal
sites than our EU effects, which may reflect the differences in tasks and
modeling. Overall, while using different approachs, we found patterns
consistent with Fischer and Ullsperger's (2013) findings, but also extend
our understanding of model-based single-trial EEG during
decision-making to different situations (decision under risk without
learning), models (involving loss aversion and risk attitude, but not
learning rate), and EEG-frequency (from delta to beta bands).

It is also crucial that we discuss the dissociable effects of EU and UD
on the P3-like activity during decision-making in relation to previous
research investigating outcome-locked averaged ERP. Previous ERP
research using reward-related tasks (Bellebaum et al., 2010; Gu et al.,
2011; Meadows et al., 2016) has often shown independent modulations
of valence (i.e., positive or negative) and magnitude (i.e., high or low) of
an outcome on the outcome-locked P3 (although see Sato et al. (2005) for
a contradictory finding). In these studies, outcomes with either a) posi-
tive valence regardless of magnitude (e.g., gaining rewards of any
amount) or b) high magnitude regardless of valence (e.g., gaining or
losing 5 dollars compared to 5 cents) usually lead to higher P3 amplitude.
Accordingly, our EU effects on the P3-like activity appear to be consistent
with the effect of positive valence, given that higher EU trials in our study
correspond to subjectively higher value of potential gains compared to
potential losses. However, it seems too early to conclude that our UD
effects are similar to the effects of magnitude on P3, simply because trials
with higher UD in our study had higher magnitude. We interpret the
effects of UD as related to conflict. We base this interpretation on a) the
fact that higher UD was related to slower decision RT, and b) that deci-
sion RT was associated with the EEG activity in a similar time, frequency
and topography as UD (albeit in an opposite direction). However, it is
difficult to use conflict as a process underlying the effect of magnitude on
outcome-locked P3 reported in previous studies. Future studies with both
decision-making and outcome phases that vary in UD are needed to
address this question more formally.

Our study is not without its limitation. We presented the Gain and
Loss screens in a fixed order and time-locked EEG activity to the later Loss
screen (Fig. 1). We decided to keep the fixed order to simplify the
experiment, similar to previous studies investigating decision-making
under risk that typically fix the gain and loss information to the same
location throughout the experiment (Brown et al., 2013; De Martino
et al., 2010; Sokol-Hessner et al., 2009, 2013, 2016; Tom et al., 2007).
Moreover, time-locking EEG to the Loss screen was our attempt to follow
the so-called Hillyard principle in EEG study design (Luck, 2014). This
principle states that researchers should keep the physical qualities of
stimuli as similar to each other as possible across trials while modulating
the psychological meaning of these stimuli. Here we changed the psy-
chological meanings of each of 256 Loss screens using trial-by-trial pa-
rameters: EU and UD. Nonetheless, we may have inadvertently drawn too
much attention to the Loss screen, even though our effects of interests
(EU and UD) included both gain and loss information in their calculation.
Thus, having a tight control in our design may have limited the gener-
alizability of our findings to situations where gain information is pre-
sented before loss information. Perhaps, if loss information is presented
before gain information, the gain information might be more salient.
Accordingly, one important future direction is to investigate the order of
gain and loss presentation and examine if the order interacts with the
effects of EU and UD on EEG activity.

5. Conclusions

EU indicates choice values in the reward-punishment continuum
while UD is more relevant to the ease in decision-making. Using model-
based single-trial EEG analyses, we were able to discern differential in-
fluences of EU and UD in time, frequency and topographical space. First,
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the influences of EU on the P3-like activity and delta power were earlier
than those of UD. This finding seems to suggest that, when evaluating
choices during decision-making under risk, participants allocated atten-
tional resources to motivation-related information sooner than to
conflict-related information. Next, prior to making a response, EU and
UD influenced EEG activity at different frequencies. This finding suggests
the differential involvement of anticipatory processes associated with EU
and UD. While motivation-related EU modulated reward-related antici-
pation (reflected by alpha-band and beta-band power), conflict-related
UD modulated attention-related anticipation (reflected by CNV-like ac-
tivity). Altogether, for the first time, we showed that EEG signals that
traced the motivation-related information during decision-making under
risk was dissociable from those that traced the conflict-related informa-
tion in time, frequency and topographical characteristics.
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